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Abstract

Cyclotomic polynomials are a well-studied class of polynomials in algebraic num-
ber theory. The nth cyclotomic polynomial, denoted as Φn(x), is a polynomial with
integer coefficients that has precisely all primitive nth roots of unity as its roots. Cy-
clotomic polynomials are known to be irreducible over the rational numbers. In this
paper, we propose a factorization of Φmp(x) in which p is prime and p ∤ m over the
cyclotomic extension field Q(ζm), where ζm is a primitive mth root of unity, and show
that the proposed factorization is irreducible over this extension field. Moreover, all
coefficients of these irreducible factors are powers of ζm. With this factorization, we
provide new proofs for the coefficients of cyclotomic polynomials Φ3p(x) and Φ6p(x)
for any prime p ≥ 5 and prove a new explicit identity for Φ5p(x) and Φ10p(x) for any
prime p ≥ 7.

1 Introduction

Research on cyclotomic polynomials has a long and rich history that spans centuries. The
concept of roots of unity traces back to ancient Greek mathematics. In the 1730’s Euler
formally introduced the concept of cyclotomic polynomials. He defined the nth cyclotomic
polynomial, denoted by Φn(x), as the polynomial whose roots are precisely the primitive nth

roots of unity. Gauss made significant contributions to the study of cyclotomic polynomials.
In his work “Disquisitiones Arithmeticae” (1801) he proved irreducibility of Φp(x) over
rational numbers when p is prime, derived the cyclotomic identity xn − 1 =

∏
d|nΦd(x),

and developed the theory of cyclotomy that studies the properties of cyclotomic fields. In
the mid-19th century, Kronecker expanded upon Gauss’ ideas and further developed the
theory of cyclotomic polynomials. The study of cyclotomic polynomials gained further
momentum in the 20th century with the work of Kummer in which he established deep
connections between cyclotomic polynomials and algebraic number theory.
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For any positive integer n, the nth cyclotomic polynomial inQ[x] is the unique irreducible
polynomial with integer coefficients that is a divisor of xn − 1 and has as its roots all nth

primitive roots of unity. In other words, the nth cyclotomic polynomial is

Φn(x) =
∏

1≤k≤n
(k,n)=1

(x− ζkn),

where ζn is any primitive nth root of unity. The irreducibility of Φp(x) for prime p was first
proved by Gauss [1], and the irreducibility of Φn(x) for general integer n was first proved
by Kronecker [2].

The prime factorization of n plays an important role in the study of Φn(x). Two of the
most straightforward results are: Φp(x) = 1 + x + x2 + · · · + xp−1 for any prime p; and
Φ2p(x) = 1− x+ x2 − · · ·+ xp−1 for any odd prime p. Explicit formulae for Φ3p, Φ6p (p an
odd prime) and other results for Φpq(x) (where p and q distinct odd primes) can be found
in [3, 4, 5].

In this paper, we are interested in Φn(x) for n = mp, where p is an odd prime and
(m, p) = 1. Note that we focus on the situation that (m, p) = 1 because of this well-known
fact: if n = mpr with (m, p) = 1, then Φn(x) = Φmp(x

pr−1
) [6]. Instead of restricting

ourselves to Q[x], we examine the factorization of Φmp(x) over the simple extension field
Q(ζm) where ζm is a primitive mth root of unity.

The field Q(ζn) is called the nth cyclotomic field and it is the splitting field of xn−1 and
of Φn(x) over Q. Therefore Q(ζn) is a Galois extension of Q and [Q(ζn) : Q] = φ(n), where
φ is Euler’s totient function. The Galois group Gal(Q(ζn)/Q) is naturally isomorphic to
the multiplicative group (Z/nZ)×, which consists of the invertible residues modulo n. The
isomorphism sends each σ ∈ Gal(Q(ζn)/Q) to a mod n, where a is an integer such that
σ(ζn) = ζan.

2 Main Results

The main result of this paper gives a factorization of Φmp(x) over the cyclotomic field Q(ζm)
where p is prime and (m, p) = 1.

Theorem 2.1. Suppose n = mp, where p is a prime and (m, p) = 1. Let ζn be a prim-
itive nth root of unity and ζm = ζpn be a primitive mth root of unity. Define Φn,i(x) =∑p−1

t=0 ζ
it
mx

p−1−t. Then

Φn(x) =
∏

1≤i≤m
(i,m)=1

Φn,i(x).

Proof. Note that the cyclotomic polynomial

Φn(x) =
∏

1≤j≤n
(j,n)=1

(x− ζjn).

For each 1 ≤ i ≤ m with (i,m) = 1, the set {j |1 ≤ j ≤ n, (j, n) = 1, j ≡ ip mod m} has
order p − 1, by the Chinese Remainder Theorem. All these sets are disjoint, partitioning
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the numbers in {1 ≤ j ≤ n| (j, n) = 1} into φ(m) subsets of equal size. So

Φn(x) =
∏

1≤i≤m
(i,m)=1

ψn,i(x),

where each
ψn,i(x) =

∏
1≤j≤n, (j,n)=1
j≡ip mod m

(x− ζjn)

is a polynomial of degree p − 1, which equals the degree of Φn,i(x) =
∑p−1

t=0 ζ
it
mx

p−1−t.
Therefore, it is sufficient to show that each ζjn, where 1 ≤ j ≤ n, (j, n) = 1, j ≡ ip
mod m, is a root of Φn,i(x). Note that

Φn,i(ζ
j
n) =

p−1∑
t=0

ζ itm(ζ
j
n)

p−1−t =

p−1∑
t=0

ζ iptn ζj(p−1−t)
n = ζj(p−1)

n

p−1∑
t=0

ζ(ip−j)t
n .

Since j ≡ ip mod m and (j, n) = 1, ζ ip−j
n is a primitive pth root of unity. So

∑p−1
t=0 ζ

(ip−j)t
n =

0.

For example, if n = 105 = 15 · 7 (i.e., m = 15 and p = 7) then

Φ105(x) = Φ105,1(x) ·Φ105,2(x) ·Φ105,4(x) ·Φ105,7(x) ·Φ105,8(x) ·Φ105,11(x) ·Φ105,13(x) ·Φ105,14(x).

Each of the above eight Φ105,i(x) = x6 + ζ i15x
5 + · · · + ζ5i15x + ζ6i15, where ζ15 = ζ7105.

Moreover, each Φ105,i(x) has six roots. For instance, the roots of Φ105,1(x) are ζj105, j =
22, 37, 52, 67, 82, 97.

The next result shows that each factor Φmp,i(x) in the Theorem 2.1 is irreducible over
Q(ζm)[x].

Theorem 2.2. Let Φn,i(x) be as defined in Theorem 2.1, and ζm be any primitive mth root
of unity. Then Φn,i(x) is an irreducible polynomial in Q(ζm)[x].

Proof. By way of contradiction, assume that Φn,i(x) is reducible. Say Φn,i(x) = f(x)g(x)
for polynomials f(x), g(x) ∈ Q(ζm)[x]

Consider the Galois group Gal(Q(ζn)/Q) ∼= (Z/mpZ)×. The element of Gal(Q(ζn)/Q)
corresponding to a ∈ (Z/mpZ)× will be denoted by σa which is the automorphism defined
by σa(ζn) = ζan. Consider the subgroup {km+ 1 : 0 ≤ k ≤ (p− 1) and (p, km+ 1) = 1} of
(Z/mpZ)× ∼= (Z/mZ)× × (Z/pZ)×. This corresponds to the cyclic subgroup ⟨1⟩×(Z/pZ)×
of (Z/mZ)× × (Z/pZ)× which has order p − 1. Thus P = {σkm+1 : 0 ≤ k ≤ (p −
1) and (p, km+ 1) = 1} forms the subgroup of Gal(Q(ζn)/Q) which fixes the mth roots of
unity ⟨ζpn⟩ = ⟨ζm⟩; that is, P = Gal(Q(ζn)/Q(ζm)). Now the roots of Φn,i(x) are all ζjn for
which 1 ≤ j ≤ n−1, (j, n) = 1, and j = i (mod m). Note that for each such j, ζjn /∈ Q(ζm)
because p does not divide j and ζpn = ζm.

Now suppose without loss of generality that j = i (mod m), ζ in is a root of f(x), and ζjn
is a root of g(x). Since f(x) and g(x) are polynomials over Q(ζm), they are both fixed under
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the action of P . However, we will conclude the proof by showing that there is σkm+1 ∈ P
such that σkm+1(ζ

i
n) = ζjn, which contradicts the fact that P fixes f(x) and g(x).

The elements i, j ∈ (Z/mpZ)× are congruent modulo m and so correspond to pairs
([i]m, [i]p) and ([j]m, [j]p) = ([i]m, [j]p) in (Z/mZ)× × (Z/pZ)× ∼= (Z/mpZ)×. Let km + 1
be the element of (Z/mpZ)× which corresponds to the pair (1, [j]p[i]

−1
p ) in ⟨1⟩ × (Z/pZ)×.

Thus σkm+1 ∈ P and takes ζ in to ζjn, as required.

3 Applications

One application of the factorization in Theorem 2.1 is to compute the coefficients of Φmp(x)
when φ(m) is small. For m = 3 or 6, φ(m) = 2 and we have that Φn(x) = Φn,1(x)Φn,n−1(x).
With this factorization, we are able to provide a new and straightforward proof of Theorem
3.1 which was first proven in [4].

Theorem 3.1. [4] Let p be any odd prime.

� If p ≡ 1 mod 3, then

Φ3p(x) = 1−x+x3−x4+ · · ·−xp−3+xp−1−xp+1+ · · ·−x2p−6−x2p−5+x2p−3+x2p−2.

� If p ≡ 2 mod 3, then

Φ3p(x) = 1−x+x3−x4+ · · ·−xp−2−xp−1−xp+ · · ·−x2p−6−x2p−5+x2p−3+x2p−2.

Proof. Let ck denote the coefficient of xk in the polynomial Φ3p(x). For each 0 ≤ k ≤ p− 1
write k = 3t+ r for r ∈ {0, 1, 2}. Now

c2p−2−k =
3t+r∑
i=0

ζ i3ζ
i+2r
3 = ζ2r3

3t+r∑
i=0

ζ2i3 = ζ2r3

r∑
i=0

ζ2i3 .

When r = 0 this sum is 1, when r = 1 this sum is ζ23 (1 + ζ23 ) = ζ23 (−ζ3) = −1, and when
r = 2 this sum is ζ3(1+ζ

2
3+ζ3) = 0. This gives us the p−1 coefficients of the highest powers

of x, the lower-order coefficients follow from the fact that Φ3p(x) is a palindrome.

The known identity Φ2n(x) = (−1)Φ(n)Φn(−x) from [6] for any odd value of n yields
Φ6p(x) = Φ3p(−x) for an odd prime p and so we also have Theorem 3.2.

Theorem 3.2. Let p be any odd prime.

� If p ≡ 1 mod 3, then

Φ6p(x) = 1+x−x3−x4+ · · ·−xp−3+xp−1−xp+1+ · · ·−x2p−6−x2p−5+x2p−3+x2p−2.

� If p ≡ 2 mod 3, then

Φ6p(x) = 1+x−x3−x4+ · · ·+xp−2−xp−1+xp+ · · ·−x2p−6−x2p−5+x2p−3+x2p−2.
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The factorization in Theorem 2.1 even allows us to calculate Φ5p(x) and Φ10p(x). Be-
cause Φn(x) is a palindrome, Theorems 3.3 and 3.7 yield explicit formulae.

Theorem 3.3. Let p > 5 be prime and let ck be the coefficient of xk in the cyclotomic
polynomial Φ5p(x) which has degree 4(p− 1). Then for 0 ≤ k ≤ p− 1,

c4p−4−k =


1 if k = 0 mod 5

−1 if k = 1 mod 5
0 if k = 2, 3, 4 mod 5

Furthermore,

� if p = 1 mod 5, then

c3p−3−k =


1 if k = 0 mod 5

−1 if k = 2 mod 5
0 if k = 1, 3, 4 mod 5

� if p = 2 mod 5, then

c3p−3−k =


1 if k = 1, 4 mod 5

−1 if k = 0, 2 mod 5
0 if k = 3 mod 5

� if p = 3 mod 5, then

c3p−3−k =


1 if k = 1, 3 mod 5

−1 if k = 2, 4 mod 5
0 if k = 0 mod 5

� if p = 4 mod 5, then

c3p−3−k =


1 if k = 1 mod 5

−1 if k = 3 mod 5
0 if k = 0, 2, 4 mod 5

Here are two examples calculated with Theorem 3.3.

p = 11 Φ55(x) has degree 40 and since 11 = 1 mod 5 its sequence of coefficients is as
follows. The circled entry is the coefficient of the middle term, x20.

1 −1 0 0 0 1 −1 0 0 0
1 0 −1 0 0 1 0 −1 0 0 1O
0 0 −1 0 1 0 0 −1 0 1
0 0 0 −1 1 0 0 0 −1 1
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p = 17 Φ85(x) has degree 64 and since 17 = 2 mod 5 its sequence of coefficients is as
follows. The circled entry is the coefficient of the middle term, x32.

1 −1 0 0 0 1 −1 0 0 0 1 −1 0 0 0 1
−1 1 −1 0 1 −1 1 −1 0 1 −1 1 −1 0 1 −1 1O
−1 1 0 −1 1 −1 1 0 −1 1 −1 1 0 −1 1 −1
1 0 0 0 −1 1 0 0 0 −1 1 0 0 0 −1 1

Before proving Theorem 3.3 we present the following propositions which we use repeatedly
without further mention. Let g denote the golden ratio 1+

√
5

2
and ḡ = 1−

√
5

2
. These are the

roots of polynomial x2 − x− 1. They also satisfy the relation gḡ = −1.

Proposition 3.4. Let ck denote the coefficient of xk in Φ5p,1(x)Φ5p,4(x). If 0 ≤ k ≤ p− 1,
then

c2p−2−k =


1 if k = 0 mod 5

−ḡ if k = 1 mod 5
ḡ if k = 2 mod 5

−1 if k = 3 mod 5
0 if k = 4 mod 5

Furthermore, Φ5p,1(x)Φ5p,4(x) is a palindrome and so ck = c2(p−1)−k for 0 ≤ k < p− 1.

Proof. Recall that cos(π
5
) = g

2
. Thus ζ25 + ζ35 = −g and ζ5 + ζ45 = −ḡ. Now, for each

0 ≤ k ≤ p− 1 write k = 5t+ r for r ∈ {0, 1, 2, 3, 4}. Now

c2p−2−k =
5t+r∑
i=0

ζ i5ζ
i+4r
5 = ζ4r5

5t+r∑
i=0

ζ2i5 = ζ4r5

r∑
i=0

ζ2i5 .

For r = 0 mod 5 this sum is 1, for r = 1 mod 5 this sum is ζ45 (1 + ζ25 ) = ζ45 + ζ5 = −ḡ,
for r = 2 mod 5 this sum is ζ35 (1 + ζ25 + ζ45 ) = ζ35 + 1 + ζ25 = ḡ, for r = 3 mod 5
this sum is ζ25 (1 + ζ25 + ζ45 + ζ5) = ζ25 (−ζ35 ) = −1, and for r = 4 mod 5 this sum is
ζ5(1 + ζ25 + ζ45 + ζ5 + ζ35 ) = 0.

The roots of Φ5p,1(x)Φ5p,4(x) are all ζ
t
5 for which (t, 5) = 1 and t = 1 or 4 mod 5. This

set of roots is closed under multiplicative inverses. Therefore f(x) = Φ5p,1(x)Φ5p,4(x) and
its reciprocal polynomial x2p−2f(1/x) have the same roots which makes f(x) a palindrome.
Thus the calculation above for ck with k ≥ p − 1 suffices to find ck for k < p − 1 as
stated.

Proposition 3.5. Let ck denote the coefficient of xk in Φ5p,2(x)Φ5p,3(x). Let g denote the

golden ratio 1+
√
5

2
. If 0 ≤ k ≤ p− 1, then

c2p−2−k =


1 if k = 0 mod 5

−g if k = 1 mod 5
g if k = 2 mod 5

−1 if k = 3 mod 5
0 if k = 4 mod 5

Furthermore, Φ5p,2(x)Φ5p,3(x) is a palindrome and so ck = c2(p−1)−k for 0 ≤ k < p− 1.
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Proof. Similar to the previous proof.

Proposition 3.6. Let γg = (1,−g, g,−1, 0) and γḡ = (1,−ḡ, ḡ,−1, 0). If u and v are
obtained respectively from γg and γḡ by cyclic shift, reversal, and/or negation, then u·v = 0.

Proof. First note that the vector obtained from reversal of γg is equal to the negation of a
cyclic shift of γg; similarly for the reversal of γḡ. So we need only check that γg is orthogonal
to every cyclic shift of γḡ and this will complete the proof.

� (1,−g, g,−1, 0) · (1,−ḡ, ḡ,−1, 0) = 1− 1− 1 + 1 = 0

� (1,−g, g,−1, 0) · (−ḡ, ḡ,−1, 0, 1) = −ḡ + 1− g = 0

� (1,−g, g,−1, 0) · (ḡ,−1, 0, 1,−ḡ) = ḡ + g − 1 = 0

� (1,−g, g,−1, 0) · (−1, 0, 1,−ḡ, ḡ) = −1 + g + ḡ = 0

� (1,−g, g,−1, 0) · (0, 1,−ḡ, ḡ,−1) = −g + 1− ḡ = 0

Proof of Theorem 3.3. Let f(x) = Φ5p,2(x)Φ5p,3(x) and f(x) = Φ5p,1(x)Φ5p,4(x). Thus
Φ5p(x) = f(x)h(x). Now let ck denote the coefficient of xk in Φ5p(x) which has degree
4(p− 1). Thus

c4p−4 = 1,

c4p−5 = (1,−g) · (−ḡ, 1) = −1,

c4p−6 = (1,−g, g) · (ḡ,−ḡ, 1) = 0,

c4p−7 = (1,−g, g,−1) · (−1, ḡ,−ḡ, 1) = 0, and

c4p−8 = (1,−g, g,−1, 0) · (0,−1, ḡ,−ḡ, 1) = 0

These together with the orthogonality of cyclic shifts, reversals, and/or negations of γg and
γḡ imply that imply that c4p−4−k has the required value for 0 ≤ k ≤ p− 1.

It remains only to prove the statement of our theorem for coefficients c3p−3−k for 0 ≤
p ≤ k− 1. In Case 1 we will assume p = 3 mod 5 and in Case 2 we assume p = 1 mod 5.
The remaining two cases are done similarly.

Case 1 Assume that p = 3 mod 5. First, we directly calculate c2p−2, c2p−1, c2p, c2p+1, c2p+2.
As an aid to the reader, the coefficient of the middle terms of the palindromes f(x) and
h(x) are circled. Thus

c2p−2 = (γg . . . γg 1 −g gO −g 1 Jγg . . . Jγg) ·
(γḡ . . . γḡ 1 −ḡ ḡO −ḡ 1 Jγḡ . . . Jγḡ)

in which Jv is the vector obtained from vector v by reversing its entries. Therefore c2p−2 =
(1,−g, g,−g, 1) · (1,−ḡ, ḡ,−ḡ, 1) = −1. Next,

7



c2p−1 = (γg . . . γg 1 −g gO −g γ′ . . . γ′) ·
(γ′′ . . . γ′′ −ḡ ḡO −ḡ 1 Jγḡ . . . Jγḡ)

in which γ′ is a cyclic shift of Jγg and γ′′ is a cyclic shift of γḡ. Therefore c2p−1 =
(1,−g, g,−g) · (−ḡ, ḡ,−ḡ, 1) = 1. Next,

c2p = (γg . . . γg 1 −g gO γ′ . . . γ′) ·
(γ′′ . . . γ′′ ḡO −ḡ 1 Jγḡ . . . Jγḡ)

in which γ′ is a cyclic shift of Jγg and γ′′ is a cyclic shift of γḡ. Therefore c2p = (1,−g, g) ·
(ḡ − ḡ, 1) = 0. Next,

c2p+1 = (γg . . . γg 1 −g γ′ . . . γ′) ·
(γ′′ . . . γ′′ −ḡ 1 Jγḡ . . . Jγḡ)

in which γ′ is a cyclic shift of Jγg and γ′′ is a cyclic shift of γḡ. Therefore c2p+1 = (1,−g) ·
(−ḡ, 1) = −1. Lastly,

c2p+2 = (γg . . . γg 1 γ′ . . . γ′) ·
(γ′′ . . . γ′′ 1 Jγḡ . . . Jγḡ)

in which γ′ is a cyclic shift of Jγg and γ′′ is a cyclic shift of γḡ. Therefore c2p+2 = 1.
Now for 0 ≤ t ≤ 4 and 0 ≤ t + 5k ≤ p − 1 we must have c2p−2+t+5k = c2p−2+t because

the form of the dot product for c2p−2+t+5k is given by the form of dot product for c2p−2+t

with k copies of an appropriate cyclic shift γg and of γḡ inserted between the circled entries
as shown.

c2p−2+5k = (γg . . . γg 1 −g g . . . δ′ −g 1 Jγg . . . Jγg)·
(γḡ . . . γḡ 1 −ḡ ḡO . . . δ′′ −ḡ 1 Jγḡ . . . Jγḡ) = c2p−2

c2p−1+5k = (γg . . . γg 1 −g . . . δ′ gO −g γ′ . . . γ′)·
(γ′′ . . . γ′′ −ḡ ḡO . . . δ′′ −ḡ 1 Jγḡ . . . Jγḡ) = c2p−1

c2p+5k = (γg . . . γg 1 −g . . . δ′ gO γ′ . . . γ′)·
(γ′′ . . . γ′′ ḡO −ḡ . . . δ′′ 1 Jγḡ . . . Jγḡ) = c2p

c2p+1+5k = (γg . . . γg 1 −g . . . γ′ γ′ . . . γ′)·
(γ′′ . . . γ′′ −ḡ 1 . . . Jγḡ Jγḡ . . . Jγḡ) = c2p+1

c2p+2+5k = (γg . . . γg 1 . . . γ′ γ′ . . . γ′)·
(γ′′ . . . γ′′ 1 . . . Jγḡ Jγḡ . . . Jγḡ) = c2p+2

Now because p = 3 mod 5, we have that 3p − 3 = 2p (mod 5). This yields the desired
result for c3p−3−k in the statement of our proposition.
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Case 2 Assume that p = 1 mod 5. So

c2p−2 = (γg . . . γg 1O Jγg . . . Jγg)·
(γḡ . . . γḡ 1O Jγḡ . . . Jγḡ) = 1

and

c2p−1 = (γg . . . γg γ′ . . . γ′)·
(γ′′ . . . γ′′ Jγḡ . . . Jγḡ) = 0

and

c2p = (γg . . . γg 1 −g g −1 0 1O 0 −1 g γ′ . . . γ′)·
(γ′′ . . . γ′′ ḡ −1 0 1O 0 −1 ḡ −ḡ 1 Jγḡ . . . Jγḡ) = 0

and

c2p+1 = (γg . . . γg 1 −g g −1 0 1O 0 −1 γ′ . . . γ′)·
(γ′′ . . . γ′′ −1 0 1O 0 −1 ḡ −ḡ 1 Jγḡ . . . Jγḡ) = −1

and

c2p+2 = (γg . . . γg 1 −g g −1 0 1O 0 γ′ . . . γ′)·
(γ′′ . . . γ′′ 0 1O 0 −1 ḡ −ḡ 1 Jγḡ . . . Jγḡ) = 0.

Now for 0 ≤ t ≤ 4 and 0 ≤ t+ 5k ≤ p− 1 we must have c2p−2+t+5k = c2p−2+t is proven
in a manner analogous to that of Case 1. Finally, because p = 1 mod 5, we have that
3p− 3 = 2p− 2 (mod 5). This yields the desired result for c3p−3−k in the statement of our
proposition.

Again we can apply Φ2n(x) = (−1)Φ(n)Φn(−x) for odd n to obtain Φ10p(x) = Φ5p(−x)
and Theorem 3.7.

Theorem 3.7. Let p > 5 be prime and let ck be the coefficient of xk in the cyclotomic
polynomial Φ10p(x) which has degree 4(p− 1). Then for 0 ≤ k ≤ p− 1,

c4p−4−k =


1 if k = 0, 1 mod 10

−1 if k = 5, 6 mod 10
0 if k = 2, 3, 4, 7, 8, 9 mod 10

Furthermore,

� if p = 1 mod 5, then

c3p−3−k =


1 if k = 0, 7 mod 10

−1 if k = 2, 5 mod 10
0 if k = 1, 3, 4, 6, 8, 9 mod 10
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� if p = 2 mod 5, then

c3p−3−k =


1 if k = 4, 5, 6, 7 mod 10

−1 if k = 0, 1, 2, 9 mod 10
0 if k = 3, 8 mod 10

� if p = 3 mod 5, then

c3p−3−k =


1 if k = 6, 7, 8, 9 mod 5

−1 if k = 1, 2, 3, 4 mod 5
0 if k = 0, 5 mod 5

� if p = 4 mod 5, then

c3p−3−k =


1 if k = 3, 6 mod 10

−1 if k = 1, 8 mod 10
0 if k = 0, 2, 4, 5, 7, 9 mod 10
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