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Abstract

A classical theorem independently due to Gallai and Roy states that a graph G has a proper k-coloring if and only if G has
an orientation without coherent paths of length k. An analogue of this result for signed graphs is proved in this article.
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1. Introduction

Theorem 1.1 is a classical result characterizing the existence of a proper k-coloring of a graph G in terms of orientations.

Theorem 1.1 (Gallai [3] and Roy [8]). For a graph G the following statements are equivalent.

(1) G has a proper k-coloring.

(2) G has an acyclic orientation without coherent paths of length k.

(3) G has an orientation without coherent paths of length k.

A signed graph is a pair (G, σ) in which G is a graph and σ : E(G) → {+,−}. The first paper on an algebraic notion
of coloring signed graphs is by Zaslavsky [11].† His approach was clarified by Máčajová, Raspaud, and Škoviera [7] as
follows. Let M2k+1 = {−k, . . . ,−1, 0, 1, . . . , k} and M2k = {−k, . . . ,−1, 1, . . . , k}. An n-coloring of a signed graph (G, σ) is a
function κ : V (G) → Mn. An n-coloring κ is proper when for each edge e in (G, σ) with endpoints u and v (possibly equal)
κ(u) 6= σ(e)κ(v). Evidently every signed graph (G, σ) without positive loops has a proper 2|V (G)|-coloring and if (G, σ) has
a proper n-coloring, then (G, σ) has a proper (n+ 1)-coloring. Thus it makes sense to define the chromatic number χ(G, σ)
as the smallest n such that (G, σ) has a proper n-coloring.

The coloring of (G, σ) in [7, 11] use color sets in Z. There are other algebraic notions of coloring signed graphs which
together with integer coloring all have a common generalization in the concept of permutation coloring by Slilaty [9]. We
will give a short survey of these notions and their relationships in Section 2. Arguably, however, integer coloring of signed
graphs is the most central of these notions. Evidence enough is the rich theory of chromatic polynomials developed by
Zaslavsky [12, 14] which broadly generalizes chromatic polynomials of ordinary graphs along with their relationship to
matroid theory.

The main result of the present article is Theorem 5.2 which is an analogue of Theorem 1.1 for signed graphs. Theorem
5.1 is also a result of interest.

2. A survey of different coloring notions

Slilaty’s notion of coloring permutation-gain graphs [9] specializes to signed graphs as follows. Let K be a set of colors on
which the group {+,−} has a left multiplicative action. A K-coloring of a signed graph (G, σ) is a function f : V (G) → K

and the K-coloring is said to be proper when for each edge e with endpoints u and v we have that f(u) 6= σ(e)f(v). This
includes the case for which e is a loop, that is, when u = v. Thus a positive loop prevents any K-coloring from being proper
while a negative loop simply requires that the color at its vertex is not fixed under the group action.
∗E-mail address: daniel.slilaty@wright.edu
†The earlier paper by Cartwright and Harary [1] which states its main concept as “coloring signed graphs” is actually better understood within the

topic of clusterability of signed graphs.
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Color sets K = M2t = {−t, . . . ,−1, 1, . . . , t} and K = M2t+1 = {−t, . . . ,−1, 0, 1, . . . , t} within Z were already discussed
in the introduction. Evidently, K-coloring for K = M2t or M2t+1 falls under the notion of permutation coloring. Using
color set K being a finite additive group is also possible, but has received less attention. Let’s call this type of coloring
modular coloring. Again, modular coloring is clearly generalized by permutation coloring. Kang and Steffen have recently
made investigations [4, 5] into modular coloring. Kim and Ozeki [6] noted that integer coloring and modular coloring
are both generalized by Dvořák and Postle’s correspondence coloring (a.k.a. DP-coloring) [2]. Permutation coloring is
also generalized by correspondence coloring; however, permutation coloring does provides more structure. In particular,
permutation coloring has a well-defined notion of chromatic polynomials and extensions of colorings to covering graphs.

Say that the group {+,−} acts on the set K. Hence for each x ∈ K either x is fixed (i.e., x = −x) or {x,−x} is an orbit
of size two. Propositions 2.1–2.3 contain some basic observations concerning K-coloring of signed graphs.

Proposition 2.1. Say that {+,−} acts on finite sets K1 and K2 in which Ki has si fixed elements and ti orbits of order two.
If (G, σ) has a proper K1-coloring, |K2| ≥ |K1|, and t2 ≥ t1, then (G, σ) has a proper K2-coloring.

Proof. Because |K2| ≥ |K1| and t2 ≥ t1 there is an injective function ι : K1 → K2 such that for every x ∈ K1 in an orbit of
size two, −ι(x) = ι(−x). Now if f is a proper K1-coloring of (G, σ), then ιf is a proper K2-coloring of (G, σ).

Proposition 2.2. Let A be any additive group with |A| = 2k+1. If (G, σ) is a signed graph, then there is a bijection between
the proper A-colorings of (G, σ) and the proper (2k + 1)-colorings of (G, σ).

Proof. For an additive group of odd order, the action of {+,−} onA fixes 0, only. Similarly, the action of {+,−} onM2k+1 fixes
0, only. Thus the injection defined in the proof of Proposition 2.1 is now a bijection and provides the desired correspondence.

Proposition 2.3. If every point of K is fixed under the action of K, then (G, σ) has a proper K-coloring if and only if the
underlying graph G has a proper |K|-coloring.

3. Background material

In a graph G, an incidence is where an end of an edge meets a vertex. As such every edge (including loops) has two
distinct incidences. An incidence can be denoted by a pair (v, e) in which vertex v is an endpoint of edge e. Although this
notation does not distinguish between the two distinct incidences of a loop, it can be modified as (v, e)1 and (v, e)2 in order
to distinguish the two. A bidirection on G is a function β : I(G)→ {1,−1}. When β(v, e) = +1 we think of the incidence as
having an arrow pointing at v and when β(v, e) = −1 the incidence has its arrow pointing away from v. Thus bidirections
produce three types of edges: introverted, extroverted, and directed (see Figure 1).

Extroverted

Introverted

Directed

Figure 1: The three types of edges in a bidirected graph.

Again, a signed graph is a pair (G, σ) in which G is a graph and σ : E(G) → {+,−}. A path or cycle C in G is called
positive (or negative) when the product of signs on its edges is positive (or negative). A circuit in (G, σ) is a subgraph
which is either a positive cycle, two negative cycles which intersect in a single vertex (called a tight handcuff ), or two
vertex-disjoint negative cycles along with a minimal connecting path (called a loose handcuff ).

An orientation of a signed graph (G, σ) is a bidirection β satisfying β(v, e)β(u, e) = −σ(e). When e is a loop, this means
β((v, e)1)β((u, e)2) = −σ(e). As such, each negative edge is either introverted or extroverted and each positive edge has one
of two possible directions. An oriented signed graph is a triple (G, σ, β) where β is an orientation of (G, σ). A vertex v in
(G, σ, β) is a source (or sink) when all of the bidirectional arrows at v are directed towards (or away) from v. A vertex in v

in (G, σ, β) is singular when it is either a source or a sink.
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Let (G, σ, β) be an oriented signed graph. A path P in (G, σ, β) is coherent when every internal vertex of (P, σ, β) is
non-singular. A cycle C in (G, σ, β) is coherent when every vertex of (C, σ, β) is non-singular. It is worth noting that if a
cycle C is negative, then (C, σ, β) has an odd number of singular vertices and so is never coherent. A circuit C in (G, σ) is
coherent when every vertex in (C, σ, β) is nonsingular. The reader can check that there are exactly two possibilities for a
coherent β on a circuit C and if β is one of them, then −β is the other. An orientation β of (G, σ) is acyclic when it contains
no coherent circuit. Zaslavsky [13, Corollary 5.3] proved that if (G, σ, β) is acyclic, then (G, σ, β) has a singular vertex.

Given a signed graph (G, σ), a switching function is a function η : V (G)→ {+,−}. Define ση by ση(e) = η(u)σ(e)η(v) in
which u and v are the endpoints of e. (This includes the case for a loop.) If β is a bidirection of G, then ηβ is a bidirection
on G. One can think of ηβ as being obtained from β by reversing the arrows at v when η(v) = − and leaving the arrows at
v the same when η(v) = +. Since a vertex is singular in (G, σ, β) if and only if it is singular in (G, ση, ηβ), a signed-graphic
circuit C is coherent in (G, σ, β) if and only if it is coherent in (G, ση, ηβ).

Now if κ is a proper integer coloring of (G, σ), then there is a natural orientation of (G, σ) induced by κ, call it βκ. For each
edge e with ends (u, e) and (v, e) there is exactly one choice for orientation βκ(e) so that βκ(u, e)κ(u)+βκ(v, e)κ(v) > 0. Call
βκ the orientation induced by κ. Zaslavsky [11] notes that βκ is acyclic when κ is proper. He then uses induced orientations
to generalize the work on pairings of acyclic orientations and proper colorings of ordinary graphs by Stanley [10]. If η is
a switching function for (G, σ) and κ a proper integer coloring, then ηκ is a proper coloring of (G, ση). In fact, κ 7→ ηκ is
a bijection between the collection of all proper colorings of (G, σ) and those of (G, ση). If κ is a proper integer coloring of
(G, σ), then βηκ = ηβκ.

4. Normalizing colorings and acyclic orientations

If β is an acyclic orientation of (G, σ), then there is partitioning L0, L1, . . . of V (G) which we shall call the canonical level
decomposition of (G, σ, β) which is defined as follows. Let L+

0 denote the set of sinks and isolated vertices in (G, σ, β) and
let L−0 denote the set of sources in (G, σ, β). Let L0 = L+

0 ∪ L
−
0 . Because (G, σ, β) is acyclic L0 6= ∅. Now let Gi+1 =

G− (L0 ∪ · · · ∪ Li). If Gi+1 6= ∅, then let L+
i+1 and L−i+1 be respectively the set of sinks along with isolated vertices and the

set of sources in acyclic (Gi+1, σ, β) and let Li+1 = L+
i+1 ∪L

−
i+1; otherwise, we halt the process. The normalization of β is ηβ

in which η is a switching function for which η(v) = ε when v ∈ Lεi . Note that the canonical level decompositions of β and
ηβ are both L0, L1, . . ..

Proposition 4.1. Let β be a normalized acyclic orientation of (G, σ, β) and let L0, . . . , Lk−1 be the canonical level decompo-
sition.

(1) If e is a negative edge, then e is extroverted.

(2) If e is a positive edge with head end in Li and tail end in Lj , then i < j.

(3) If v ∈ Lj for j > 0, then there is a positive edge e with v as its tail with w ∈ Lj−1 as its head.

Proof. (1) If e is an introverted negative edge, then the endpoint(s) of e would be indicated as sources in the construction
of the canonical level decomposition. However, since β is normalized, every vertex is indicated as a sink or isolated vertex
in the construction of the canonical level decomposition, a contradiction.
(2) If e is a positive edge for which j ≤ i, then its tail would be indicated as a source during the construction of the canonical
level decomposition. This yields the same contradiction as in the proof of (1).
(3) If such a positive edge does not exist, then v would have been removed at an earlier iteration during the construction
of the canonical level decomposition.

An n-coloring κ is normalized by switching function η for which η(v) = − if and only if κ(v) < 0. Thus ηκ(v) ≥ 0 for all
v. Note that all negative edges of (G, σ, βηκ) are extroverted.

Proposition 4.2. Let κ be a proper n-coloring of (G, σ) chosen among all proper n-colorings so that
∑
v∈V (G) |κ(v)| is a

maximum. If ηκ is the normalization of κ and L0, . . . , Lk−1 is the canonical level decomposition of βηκ, then

(1) ηκ(v) = i if and only if v ∈ Lt−i when n = 2t is even,

(2) ηκ(v) = i if and only if v ∈ Lt−1−i when n = 2t− 1 is odd, and

(3) βηκ is normalized.
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Proof. (1 and 2) Since ηκ is normalized, each v ∈ V (G) satisfies ηκ(v) ∈ {1, . . . , t} when n = 2t and ηκ(v) ∈ {0, 1, . . . , t− 1}
when n = 2t − 1. We proceed by induction with base case covering L0. In the base case, if ηκ(v) has the maximum value,
then βηκ must be a sink or isolated vertex and so v ∈ L+

0 . Conversely if v ∈ L+
0 but ηκ(v) does not have the maximum value,

then v cannot have a positive link to any vertex having the maximum value under ηκ. Thus ηκ(v) may be changed to the
maximum value without affecting the propriety of the coloring, a contradiction of the maximality of

∑
v∈V (G) |κ(v)|. Thus

L+
0 = {v : κ(v) = k} when n is even and L+

0 = {v : κ(v) = k − 1} when n is odd. Finally we must show that L−0 = ∅. By way
of contradiction, assume that v ∈ L−0 . Thus v is not incident to any negative edges; furthermore, every positive neighbor of
v must have ηκ-value strictly greater than ηκ(v) and v is not isolated as isolated vertices are placed in L+

0 . Thus without
affecting the propriety of ηκ we can change the color ηκ(v) to ηκ(v) = −k when n is even or ηκ(v) = −(k − 1) when n is odd
and then renormalize. This, however, contradicts the maximality of

∑
v∈V (G) |κ(v)|. Thus L−0 = ∅, as required.

Assume inductively that Li = {v : κ(v) = k − i} when n is even and Li = {v : κ(v) = k − 1 − i} when n is odd for every
i ∈ {0, . . . , t}. Thus the maximum ηκ-value among vertices in Gt+1 = G − (L0 ∪ · · · ∪ Lt) is k − (t + 1) when n is even and
k−1−(t+1)when n is odd. Thus the argument for the base case applies to (Gt+1, σ, βηκ)makingLt+1 = {v : κ(v) = k−(t+1)}
when n is even and Lt+1 = {v : κ(v) = k − 1− (t+ 1)} when n is odd.
(3) Follows from Parts (1) and (2), the maximality of

∑
v∈V (G) |κ(v)|, and the fact that any vertex whose color is a maximum

must be a sink.

5. Main result

Theorem 5.1. Let (G, σ) be a signed graph and k a positive integer.

(1) (G, σ) has a proper 2k-coloring if and only if (G, σ) has an acyclic orientation whose canonical level decomposition has
at most k levels.

(2) (G, σ) has a proper (2k−1)-coloring if and only if (G, σ) has an acyclic orientation whose canonical level decomposition
has at most k levels where level Lk−1 is independent or empty.

Proof. Suppose β exists with a canonical level decomposition L0, . . . , Lt−1 in which t ≤ k. Define 2k-coloring κ by κ(v) =

ε(k − i) when v ∈ Lεi . Evidently κ is a proper 2k-coloring. If Lk−1 is independent or empty, then define (2k − 1)-coloring κ
by κ(v) = ε(k − 1− i) when v ∈ Lεi . Similarly, κ is a proper (2k − 1)-coloring.

Conversely assume that κ is a proper 2k- or (2k − 1)-coloring of (G, σ). Choose κ so that
∑
v∈V (G) |κ(v)| has maximum

possible value among all such colorings. The result now follows from Proposition 4.2.

A balloon in a signed graph is either a negative cycle or a negative cycle along with a path intersecting the cycle at
exactly one of its endpoints. The length of a balloon is the length of the cycle plus twice the length of the path. A balloon is
coherently oriented when is has exactly one singular vertex. When the balloon includes a path, this singular vertex must
therefore be the endpoint of the path that is not on the cycle. When the balloon does not contain a path, then this singular
vertex is just some vertex of the cycle.

Theorem 5.2 (Main Result). If (G, σ) is a signed graph, then (G, σ) has a proper n-coloring if and only if (G, σ) has an
acyclic orientation β whose normalization does not contain

(1) a positive coherent path of length dn2 e,

(2) a negative coherent path of length n, or

(3) a coherent balloon of length n.

Proof. For both directions of the proof, let k be the unique integer satisfying n ∈ {2k, 2k + 1}; that is, dn2 e = k + 1 when n

is odd and dn2 e = k when n is even.

(−→) Let κ be a proper n-coloring of (G, σ) chosen among all proper n-colorings so that
∑
v∈V (G) |κ(v)| is a maximum. Let

ηκ be the normalization of κ. Proposition 4.2 implies that βηκ is a normalized acyclic orientation. Since every negative
edge in (G, σ, βηκ) is extroverted, a coherent path in (G, σ, βηκ) cannot contain more than one negative edge. Thus a positive
coherent path in (G, σ, βηκ) cannot have length dn2 e because the colors of the vertices along the path are strictly increasing.
A negative coherent path contains exactly one negative edge e and so is of the form P1eP2 in which e is extroverted and Pi
is a positive coherent path where the colors of the vertices along Pi are strictly increasing. When n = 2k, this implies that
P1eP2 has length at most 1+2(k−1) = 2k−1, as required. When n = 2k+1, the length of P1eP2 is at most 1+k+(k−1) = 2k
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because the endpoints of e cannot both have color 0. A coherent balloon has exactly one negative edge, call it e, which is in
the cycle of the balloon and then has the form P1eP2 in which P1 and P2 are coherent positive paths from the two endpoints
of e and which both end at the same vertex. Again, then length of the balloon is at most 2k − 1 when n = 2k and at most
2k when n = 2k + 1, as required.

(←−) Let β be a normalized a acyclic orientation of (G, σ) which contains no positive coherent path of length dn2 e, no
negative coherent path of length n, and no coherent balloon of length n.

If n = 2k is even, then let the levels for β be called L1, . . . , Lm. Proposition 4.1 and the fact that there is no coherent
positive path of length k = dn2 e imply that m ≤ k. Define a 2k-coloring κ by κ(v) = k + 1− i for v ∈ Li. Proposition 4.1 now
implies that κ is a proper coloring.

If n = 2k+1, then let the levels for β be called L0, . . . , Lm. Proposition 4.1 and the fact that there is no coherent positive
path of length k + 1 = dn2 e imply that m ≤ k. Define a (2k + 1)-coloring κ by κ(v) = k − i for v ∈ Li. Proposition 4.1 now
implies that κ is a proper coloring excepting the possibility that there is a negative link or loop on vertices of color 0. If
such a negative edge e exists, however, then Proposition 4.1 could be used to construct a coherently bidirected balloon or
negative path of length n = 2k + 1, a contradiction.

We considered the question of whether or not any two of the three necessary conditions (in particular, conditions (2)
and (3)) from Theorem 5.2 might themselves be sufficient to imply the existence of a proper n-coloring. We were not able
to find a proof or counterexample.
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