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Abstract

We catalog up to a type of reducibility all cellular automorphisms of the sphere, projective plane, torus,
Klein bottle, and three-crosscaps (Dyck’s) surface. We also show how one can obtain all self-dual embeddings
in a surface S given a catalog of all irreducible cellular automorphisms in S.
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1 Introduction

A graph G is said to be cellularly embedded in a closed surface S if the complement of G in S is a disjoint
union of regions homeomorphic to a disk; these regions are the faces of the embedding. Figure 1.1 illustrates
two examples of cellular embeddings in the torus. (Ignore the asterisks for now.) Note that each face of an
embedding of G in S is bounded by a closed walk in G.
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Figure 1.1.

Given a graph G cellularly embedded in a closed surface S, an automorphism of G is called a cellular
automorphism of G in S when, loosely speaking, it takes facial boundary walks to facial boundary walks.
These are often called map automorphisms. In Figure 1.1 a cellular automorphism of order 4 can be defined
by sending each vertex vi to vi+1 and mapping the edges accordingly. The asterisks indicate points fixed by
some power of the automorphism less than 4. Note that any cellular automorphism of G in S induces an
automorphism of the surface S itself, but that our use of the term “cellular automorphism” is essentially tied
to the cellular structure given by the graph embedding. Thus the two different graph embeddings in Figure
1.1 give rise to two different cellular automorphisms even though the point-wise action on the torus is the
same.1

Our first task in this paper is to elucidate some of the basic properties of cellular automorphisms and
to define a notion of reduction of cellular automorphisms suitable for construction of complete catalogs of
irreducible cellular automorphisms of a given surface. More specifically, “reduction” here involves deletion
and contraction of orbits of edges, i.e., graph minors compatible with the action of the automorphism.
We verify the completeness of our catalogs with theorems of the following general form: If ϕ is a cellular
automorphism of G in S then ϕ reduces to a power of one of the following cellular automorphisms from
our catalog for S. We give complete catalogs in this way of all irreducible cellular automorphisms of the

1It is worth noting that cellular automorphisms of embedded graphs in S and elements of the mapping class group of S [9] are, in
general, not related. In the mapping class group of the sphere, for example, the only nontrivial element is isotopic to the antipodal
map, while nontrivial cellular automorphisms of graphs in the sphere can have various other forms (see Section 4). Also, it is known
[16, 21] that the mapping class group of an orientable surface S of genus at least 1 is generated by Dehn twists. A Dehn twist,
however, is performed locally around a simple closed curve, and therefore faces of an embedded graph which are not incident to
this curve are fixed. By taking a facial subdivision if necessary, it follows that any such action on an embedded graph induces the
identity cellular automorphism of the surface (see Proposition 2.2).
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sphere (Section 4), projective plane (Section 5), torus (Section 6.1), Klein bottle (Section 7.1), and three-
crosscaps surface, also known as Dyck’s surface (Section 8.1). Note that we are essentially cataloguing
automorphism/cellular-structure pairs. These are the main results of the first part of the paper.

Given graph G cellularly embedded in surface S, we define the dual graph G∗ along with the dual
embedding in S as follows: The vertices of G∗ are the “centers” of the faces of G in S, and each edge e∗

corresponds bijectively to an edge e of G and connects the vertices of G∗ corresponding to the face(s) on
either side of e. The embedding of G in S is self-dual if the cellular structure of vertices, edges and faces
given by G in S is isomorphic to the cellular structure given by G∗ in S; this implies that G and G∗ are
isomorphic graphs, but generally asserts more than that. There is a very close connection between self-duality
and cellular automorphisms of quadrangular-faced embeddings in surfaces; this was explained by Archdeacon
and Richter in [8] and we review it in Section 9.1.

Our second task in this paper is to provide procedures sufficient for constructing all possible self-dual
graph embeddings in any closed surface S given a catalog of all irreducible cellular automorphisms in S.
Our main results here are Constructions 9.14, 9.19, and 9.32 along with Theorems 9.15, 9.20, and 9.33.
Given our catalogs, our procedures characterize all self-dual embeddings in the sphere, projective plane,
torus, Klein bottle, and Dyck’s surface. Self-dual embeddings in the sphere were previously characterized
from three different perspectives by Archdeacon and Richter in [8], Servatius and Servatius in [30], and
again by Servatius and Servatius in [31]. Self-dual embeddings in the projective plane were characterized by
Archdeacon and Negami in [7].

Our key advance in this work is the development of an extendable framework designed to characterize
exhaustively all cellular automorphisms and self-dual embeddings of any given surface. The remainder of this
introduction surveys some of the extensive previous work relating to cellular automorphisms and self-duality,
as well as highlighting some connections to other topics.

Tucker [41] proved that if a finite group Γ acts on a surface S then some Cayley graph GΓ of Γ cellularly
embeds in S such that every element of Γ induces a cellular automorphism of GΓ in S. Note that Γ necessarily
acts transitively on the vertices of GΓ. Thomassen [39] uses the combinatorial restrictions imposed by vertex-
transitivity to list all but finitely many of the vertex-transitive graphs which embed in the torus or Klein
bottle. Pellicer and Weiss [28] also use such combinatorial restrictions to classify all vertex-transitive cellular
embeddings in surfaces of non-negative Euler characteristic in terms of Schläfli symbols and various polyhedral
constructions. (They further categorize these embeddings in terms of numbers of orbits of flags.) These two
works [28, 39] are those most closely related to the first portion of this paper.

Our results in the first part of this paper differ from those in [28, 39] in several ways. Primarily, we give
explicit depictions of the cellular actions of individual automorphisms rather than focusing on combinatorial
structures implied by a transitive group action. (The highly structured grid rotations discussed in Section
6.1 are a good example of curiosities that can arise from this perspective.) Our approach has a notion
of minimality and as a result many (although not all) of our minimal cellular automorphisms are vertex
transitive. Nevertheless we do not rely on any initial presumption of transitivity. We also incorporate a
detailed analysis of fixed points. Our approach is to a great extent motivated by the application in the
second half of this paper of cellular automorphisms to the study of self-dual graph embeddings.

Our study of cellular automorphisms fundamentally involves consideration of their quotient spaces, which
are essentially 2-dimensional instances of what Thurston termed “good orbifolds” in [40]. Conway and Huson
discuss 2-dimensional orbifolds in [14], and in particular provide there an interesting notational scheme. The
Thurston approach, using the notation from [14], is applied by Conway, Burgiel and Goodman-Strauss in [13]
to derive the symmetry groups of the plane and sphere. Using similar techniques, Gross and Tucker [18, 6.3.3]
classify all groups of symmetries acting on the torus. Motivated by questions from the study of Riemann
surfaces Breuer and also Broughton, Kimura, Kuribayashi, and Kuribayashi [11, 12, 19, 20] implicitly use
orbifolds to catalog and investigate all groups of orientation-preserving symmetries acting pseudofreely on
the orientable surfaces of genus 2 through 48. Again, our interest here is not in classifying entire groups
of symmetries acting on a given surface, but rather in classifying and cataloguing the ways in which an
irreducible cellular structure in a 2-dimensional orbifold lifts back to the original surface and induces a
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cellular automorphism.
Yet another tack different from the one taken here is surveyed by Širáň and Tucker [35], who present an

almost completely group-theoretic approach to the study of vertex-transitive cellular automorphisms.
A well-established direction in the study of cellular automorphisms considers lifting a cellular automor-

phism of an embedded graph to a cellular automorphism of a covering graph in a covering surface. The cover-
ing construction of particular interest here is the voltage-graph lifting construction [18, §4.1,2]. Archdeacon,
Gvozdjak, and Širáň in [5] and Širáň in [34] have observed that to lift a cellular automorphism through a
voltage-graph lifting construction requires some notion of compatibility of the voltage assignment with the
cellular automorphism; these sources each provide such compatibility conditions and use them to exhibit
interesting examples. The lifting question in the case of graph coverings (not necessarily embeddings) has
also been addressed. In [22] Malnič, Nedela, and Škoviera develop a unifying generalization called “voltage
spaces” of the various types of voltage assignments and present corresponding criteria for lifting automor-
phisms. We use techniques from [22] in Section 3.3.3. In earlier work Surowski makes use, for a similar
purpose, of the cohomology of a graph with values in a given group as an analogue of a voltage assignment
[38].

Self-duality has been of interest since the discovery of the Platonic solids. More recently, Servatius and
Servatius [32] point out three notions of self-duality for a graph G cellularly embedded in a surface S. First,
graph self-duality refers to the existence of a graph isomorphism between G and its dual G∗ in S. Second,
map self-duality indicates the existence of a cellular isomorphism of G in S to G∗ in S. (This is the type of
duality we focus on in this paper.) Third, matroid self-duality applies when G and G∗ have isomorphic cycle
matroids. In general these three notions are distinct, but for 3-connected plane graphs they are equivalent
by a result of Whitney [43].

Note that most of the results on self-duality surveyed below focus on self-dual embeddings for a given
class of graphs in different surfaces. We, however, catalogue all different map-self-dual embeddings for a
given surface, like what was done for the sphere in [8, 30, 31] and for the projective plane in [7].

One popular approach to self-duality has been to devise specific constructions that produce self-dual
embeddings. In [3] Archdeacon surveys three techniques for constructing self-dual polyhedra, two of which can
be used to construct involutory self-dual polyhedra, and the other of which, called the addition construction,
provides a means to combine two graph-self-dual embeddings to obtain a third. The addition construction
is used by Archdeacon and Hartsfield in [6] to construct graph-self-dual embeddings of complete bipartite
graphs and by Archdeacon in [4] to construct graph-self-dual embeddings of complete multipartite graphs.
Servatius and Christopher [29] offer two constructions for combining any plane graph with its dual to produce
a map-self-dual plane graph. In [30] Servatius and Servatius show how all map-self-dual plane embeddings
can be constructed by iteratively applying particular operations they call δ-expansions to one of a few basic
plane graphs.

Another popular topic is self-duality for embedded Cayley graphs and Cayley maps, such as in White
[42] and Stahl [36], which deal with graph-self-duality, and Anderson and Richter [2] which addresses map-
self-duality.

The special case of cellular automorphisms and self-duality in just the torus itself has many interesting
connections to geometry in the plane. A wallpaper isometry is an isometry of the plane that preserves a
regular square or hexagonal grid. Drawing on work of Coxeter and Moser [15], Gross and Tucker show that
any finite group of automorphisms of the torus is a quotient of a group of wallpaper isometries [18, p. 295].
Our work elaborates on this relationship between the torus and the plane in the following way. Any plane
graph which is invariant under some wallpaper isometry is called a plane lattice. Since the plane is the
universal cover of the torus, an isometry that leaves a plane lattice invariant projects down to a cellular
automorphism on the torus. (Note, though, that this projection is certainly not unique.) Conversely, any
cellular automorphism of the torus can be lifted to a cellular automorphism of a plane graph via the Map-
Extension Theorem [23, Ch.5]. Although it is not a priori obvious that the automorphism of the plane can
be chosen to be an isometry, it does follow from our catalog by checking each automorphism individually.
As such, our characterization of all cellular automorphisms on the torus can be viewed as a characterization
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of all projections of isometries of plane lattices down to the torus.
Given that any cellular automorphism of the torus can be lifted to a plane lattice, any self-dual embedding

in the torus can be lifted to a self-dual plane lattice. Conversely, any self-dual plane lattice maps down to
a self-dual embedding in the torus. As such, a characterization of all self-dual embeddings in the torus is a
characterization of projections of self-dual plane lattices. A direct cataloguing of these self-dual plane lattices
was accomplished by Servatius and Servatius in [33]. In that same paper the authors address the question
of when the automorphism group of an infinite plane graph may be realized as a group of isometries of the
plane.

Interestingly, self-dual plane lattices are also of special interest in percolation theory. Bollobás and
Riordan prove [10, §5.4] that for any plane lattice G which is invariant under reflection through the origin,
the critical bond-percolation probabilities for G and its plane dual G∗ sum to 1. Thus, such a plane lattice
which is self-dual will have percolation threshold exactly equal to 1

2 . The concept of self-duality also plays
an important role in work of Ziff and Scullard [46] which exhibits exact values of percolation thresholds for
many plane lattices. Partially motivated by percolation theory, Wierman [44] outlines several methods of
constructing infinite self-dual graphs, although not all are lattices; he comments there [44, §4] that “it may
be possible to characterize periodic infinite self-dual graphs” (i.e., self-dual plane lattices) by characterizing
self-dual graphs on the torus in a manner analogous to that of [8] for the sphere. In fact, this is one of the
items accomplished in this paper and also in [33].

2 Cellular automorphisms

Throughout the paper we assume that the reader is familiar with the topology of surfaces, their homology
groups, and curves on surfaces such as what is presented in Giblin [17] or Stillwell [37].

2.1 Graph basics

A graph G consists of a collection of vertices (i.e., topological 0-cells), denoted by V (G), and a set of edges
(i.e., topological 1-cells), denoted by E(G), where an edge has two ends each of which is attached to a vertex.
A link is an edge that has its ends incident to distinct vertices and a loop is an edge that has both of its ends
incident to the same vertex. When we refer to an edge e ∈ E(G) we presume a choice of direction along that
edge. The same edge with the opposite direction is denote by −e. Given this direction on e we have a well
defined ordering of the endpoints. The tail endpoint is referred to by t(e) and the head endpoint by h(e).
Thus h(−e) = t(e). We do not consider graphs with isolated vertices unless specifically mentioned.

A walk in G is a sequence of edges w = e1, . . . , en such that h(ei) = t(ei+1) for each i ∈ {1, . . . , n − 1}.
We say the length of w is n. If h(en) = t(e1) we say that w is closed. We consider any cyclic shift of a closed
walk to be the same closed walk. We write −w = −en, . . . ,−e1. For two graphs G and H an isomorphism
ϕ : G → H is a bijection ϕ : (V (G) t E(G)) → (V (H) t E(H)) where ϕ(V (G)) = V (H), ϕ(E(G)) = E(H),
ϕh = hϕ|E(G), and ϕt = tϕ|E(G). An isomorphism naturally extends to walks in G and takes them to walks
in H. In much of combinatorics, the usual notion of isomorphism on two simple graphs G and H is a bijection
on the vertex sets such that two vertices in G are adjacent iff their images in H are adjacent. Our definition
of isomorphism on general graphs coincides with the usual notion of isomorphism on simple graphs.

Let C1(G) denote the Z-module 〈e : e ∈ E(G)〉. Given a walk w = e1, . . . , en we misuse notation and
also use w to refer to

∑
i ei. Let Z1(G) denote the submodule of C1(G) generated by closed walks. An

introduction to voltage graphs and their derived graphs can be found in [18, §2.1], but we describe these
briefly here. Given a cyclic group A (in this work all groups are cyclic and written additively), an A-voltage
assignment on graph G is a function σ : E(G) → A such that σ(e) = −σ(−e). Given σ we construct the
derived graph Gσ as follows. We have V (Gσ) = V (G)×A and E(Gσ) = E(G)×A where (x, a), for x ∈ V (G)
or x ∈ E(G), is denoted by xa. Then t(ea) = t(e)a and h(ea) = h(e)a+σ(e).

If σ is an A-voltage assignment on a graph G, we use σ∗ to denote the induced Z-module map Z1(G)→ A.
Given η : V (G)→ A define ση : E(G)→ A by ση(e) = ηh(e) + σ(e)− ηt(e). Evidently σ∗ = ση∗ . Conversely,
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if σ∗ = τ∗ then there is an η such that τ = ση [45]. We use the following proposition repeatedly without
further mention.

Proposition 2.1. If σ and η are as above, then Gσ ∼= Gσ
η
.

Proof. Define ψ : (V (Gσ)tE(Gσ))→
(
V (Gσ

η
) t E(Gσ

η
)
)

by ψ(va) = va+η(v) and ψ(ea) = ea+ηt(e). Clearly,
ψ is bijective. Also, we have

tψ(ea) = t(ea+ηt(e)) = t(e)a+ηt(e) = ψt(ea)

and
hψ(ea) = h(ea+ηt(e)) = h(e)a+ηt(e)+ση(e) = h(e)a+σ(e)+ηh(e) = ψh(e)a+σ(e) = ψh(ea).

When G is embedded in a closed surface S such that S \ G is a collection of open 2-cells (called faces)
with 1-dimensional boundaries we say that G is cellularly embedded in S. Note that this requires that G
be connected and also excludes the embedding of a single vertex in the sphere from being termed cellular.
Let F (G) be the collection of faces and view each face f ∈ F (G) as a labeled regular n-gon where n is the
length of the facial boundary walk around f . An oriented face of G consists of a choice of face f along with
a starting vertex and direction along the n-gon (in other words, it is a choice of face along with a choice
of a flag of that face). If f is an oriented face and θ is an element of the dihedral group of order 2n, then
define the oriented face θf in the obvious fashion. Denote the set of oriented faces by ~F (G). The boundary
walk in G of f ∈ ~F (G) is denoted by ∂(f); this is a closed walk in G beginning at the designated starting
vertex and proceeding in the specified direction along f . Note that ∂(θf) = ∂(f) when θ is a rotation and
∂(θf) = −∂(f) when θ is a reflection. It is also possible (when S is the sphere) that two different oriented
faces coming from distinct underlying unoriented faces have the same boundary walk. A cellular isomorphism
from G1 in S to G2 in S is a bijection ϕ : (V (G1) t E(G1) t ~F (G1))→ (V (G2) t E(G2) t ~F (G2)) satisfying
the following: ϕ restricted to V (G1) t E(G1) is an isomorphism from G1 to G2 and ϕ restricted to ~F (G1)
takes n-sided faces to n-sides faces such that for each f ∈ ~F (G1) we have ϕ(θf) = θϕ(f) and ϕ∂ = ∂ϕ|~F (G).
When G1 = G2 we call ϕ a cellular automorphism.

A minor of a graph G is a graph obtained by contractions and deletions of edges and deletions of isolated
vertices. By convention isolated vertices are deleted as they occur; it is known that deletions and contractions
of edges can be performed singly, together, and in different orders without affecting the resulting minor. The
deletion of edge set D and contraction of edge set C is denoted by G\D/C. A surface minor of a graph G
cellularly embedded in a closed surface S is a minor that is connected and whose induced embedding is still
cellular.

Now let S denote a surface with holes whose boundaries are pointwise disjoint, and let [S]• denote the
surface with those holes capped by disks. We say that G is properly embedded in S if G is cellularly embedded
in [S]• in such a way that each boundary of a hole is covered by a cycle of G. If C is a cycle covering the
boundary of a hole, we call C a hole-cycle. A surface minor of G in S is a surface minor of G in [S]• that is
properly embedded in S.

Given G embedded in closed surface S, there is a topological dual embedding of a graph G∗ in S. The
vertices of G∗ are the centers of the faces of G in S and for each edge e in G the dual edge in G∗ connects
the vertices in the face(s) on either side of e.

2.2 Fixed points

Given a cellular automorphism of G in a closed surface S, we denote the set of fixed points of ϕ by fix(ϕ).
This is the set of points on S that are fixed by ϕ when we consider each face as a regular n-gon. If C ⊆ fix(ϕ)
forms a simple closed curve on S, then we call C an oval of ϕ. Given f ∈ ~F (G), if ϕ(f) = θf for some
dihedral symmetry θ, then θ is the identity symmetry iff ϕ(e) = e for every edge in ∂(f) iff ϕ(e) = e for some
e in ∂(f). When ϕ(f) = f (i.e., with θ = 1) we say that ϕ fixes f .
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Proposition 2.2. If ϕ is a cellular automorphism of G in S, then given f ∈ ~F (G) and e on ∂(f), ϕ is
uniquely determined by ϕ(f) and ϕ(e). In particular, ϕ fixes some f ∈ ~F (G) iff ϕ is the identity map.

Proof. Given ϕ(f) and ϕ(e), the remaining values of ϕ(e′) for all other e′ in ∂(f) are uniquely determined.
Then for any f ′ ∈ ~F (G) adjacent to f , ϕ(f ′) is uniquely determined. The rest of ϕ then follows inductively
by the fact that G∗ is connected when G is cellularly embedded.

Proposition 2.3. If a cellular automorphism ϕ of G in S is not the identity map, then fix(ϕ) is a disjoint
union of ovals and isolated points where

(1) an isolated fixed point is either at a vertex of G, the midpoint of an edge of G, or the center of a face
of G;

(2) for any e ∈ E(G), fix(ϕ) ∩ e is either all of e or the midpoint of e; and

(3) for any f ∈ ~F (G), fix(ϕ) ∩ f is either an isolated point at the center of f or a line segment connecting
two antipodal points on the boundary of f .

Proof. Let x ∈ fix(ϕ). If x is in the interior of some f ∈ ~F (G), then ϕ(f) = θf for some θ which is a reflection
or nontrivial rotation. In the former case fix(ϕ)∩ f is a line segment connecting two antipodal points on the
boundary of f and in the latter case x is an isolated fixed point at the center of f . If x is in the interior of
some e ∈ E(G), then x is the midpoint of e when ϕ(e) = −e or e ∩ fix(ϕ) = e when ϕ(e) = e.

We now have that fix(ϕ) is a collection of isolated points as in (1) along with a collection of line segments.
Since the action of ϕ around any line segment is a reflection, each endpoint of these line segments connects
to exactly one other such line segment. This gives us our desired conclusion.

Write |ϕ| to denote the order of ϕ.

Proposition 2.4. If ϕ is a cellular automorphism of G in S and |ϕ| > 2, then fix(ϕ) is a collection of
isolated points on S.

Proof. By way of contradiction suppose that x ∈ fix(ϕ) is part of an oval. In that case the intersection of
fix(ϕ) and a very small neighborhood around x is a line segment going through x. The map ϕ2 fixes this
whole neighborhood and so, by Proposition 2.3, ϕ2 is the identity.

Given |ϕ| = n, let fix(ϕ) = fix(ϕ) ∪ fix(ϕ2) ∪ · · · ∪ fix(ϕn−1). We call fix(ϕ) the set of pseudofixed points
of ϕ. When fix(ϕ) has no ovals (i.e., contains only isolated points) then ϕ is called pseudofree and when
fix(ϕ) = ∅ we call ϕ free.

Proposition 2.5. If ϕ is a cellular automorphism of G in S then, for any k,

(1) fix(ϕ) ⊆ fix(ϕk),

(2) ϕ(fix(ϕk)) = fix(ϕk), and

(3) ϕ(fix(ϕ)) = fix(ϕ).

Proof. That fix(ϕ) ⊆ fix(ϕk) is evident. Now if x ∈ fix(ϕk) then ϕk(ϕ(x)) = ϕk+1(x) = ϕ(ϕk(x)) = ϕ(x),
which implies ϕ(x) ∈ fix(ϕk) and so ϕ(fix(ϕk)) ⊆ fix(ϕk). Also ϕk(ϕ−1(x)) = ϕk−1(x) = ϕ−1(ϕk(x)) =
ϕ−1(x) and so ϕ−1(x) ∈ fix(ϕk) which implies x ∈ ϕ(fix(ϕk)). Thus fix(ϕk) ⊆ ϕ(fix(ϕk)) which implies
ϕ(fix(ϕk)) = fix(ϕk). That ϕ(fix(ϕ)) = fix(ϕ) follows from (2).

Given an isolated pseudofixed point x, the index of x is |orbitϕ(x)|, which is also equal to n/t where
t ≥ 1 is the smallest integer such that ϕt(x) = x. By Proposition 2.5(3) and continuity, ϕ maps isolated
pseudofixed points to isolated pseudofixed points and ovals to ovals. Given oval O, the smallest integer t
such that ϕt(O) = O is the index of the oval O. (Of course, t must divide |ϕ|/2.) Propositions 2.6 and 2.7
now follow.
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Proposition 2.6. If ϕ is a cellular automorphism of G in S, then fix(ϕ) is a disjoint union of isolated points
and ovals that satisfies the structural properties in Proposition 2.3.

Proposition 2.7. If fix(ϕ) contains ovals O1, . . . , Ot, then ϕ induces a permutation on this set of ovals of
order dividing |ϕ|/2.

Given an oval Oi of ϕ of index m, ϕm|Oi is a well-defined dihedral action on Oi and so is either a rotation
of Oi or a reflection of Oi. Proposition 2.8 tells us that this action is rotation rather than reflection when the
oval has an annular neighborhood. Proposition 5.2 is the analogous result for when the oval has a Möbius
neighborhood.

Proposition 2.8. Let ϕ be a cellular automorphism of G in S whose set of pseudofixed points fix(ϕ) contains
an oval O with an annular neighborhood in S. If m is the index of O, then we get the following.

(1) The action of ϕm restricted to O itself is rotation, say of order r, rather than reflection.

(2) The action of ϕm restricted to a small annular neighborhood around O is rotation of odd order r followed
by reflection.

(3) |ϕ| = 2rm

Proof. (1) If the action of ϕm on O itself is a reflection of O, then ϕ2m fixes O. Furthermore, ϕ2m fixes a
thin annular neighborhood of O because either ϕm includes reflection of faces around O or does not. Thus
ϕ2m fixes any face incident to O and so ϕ2m is the identity by Proposition 2.2. This however contradicts the
fact that O is an oval because if |ϕm| = 2, then ϕm must fix O and not perform a reflection on O.

(2) Let k = |ϕ|/2. Since ϕk fixes O, the minimality of m implies that m|k. Since the action of ϕk on a thin
annular neighborhood around O is reflection through O, the action of ϕm on the thin annular neighborhood
around O must include a reflection along with the rotation. Furthermore, the order of the rotation must be
odd.

(3) This follows by the minimality of m and Proposition 2.2.

Proposition 2.9. If ϕ is a non-pseudofree involutory cellular automorphism of G in S and the ovals of ϕ
separate S then the ovals of ϕ separate S into two connected components.

Proof. Because of the reflecting action of ϕ across the ovals, they must separate S into an even number of
components, say A1, . . . , Ak and B1, . . . , Bk where ϕ exchanges Ai and Bi. But then the ovals on Ai connect
only to the ovals on Bi. Connectivity of S now implies that k = 1.

2.3 Minors, augmentations, and induced automorphisms

2.3.1 Orbit minors

Let ϕ be an automorphism of G. Given C,D ⊂ E(G) with orbitϕ(C) ∩ orbitϕ(D) = ∅ we call the minor
H = G/orbitϕ(C)\orbitϕ(D) an orbit minor of G with respect to ϕ. The orbit minor is called nontrivial
when it has at least one edge. The automorphism induced on H from Proposition 2.10 we shall denote by
ϕ|H .

Proposition 2.10. Let ϕ be an automorphism on G and let H = G/orbitϕ(C)\orbitϕ(D) be an orbit minor.
If π is the projection map from G\orbitϕ(D) to H, then πϕπ−1 is a well-defined automorphism on H.

Proof. Note that E(H) = E(G) \ orbitϕ(D ∪ C) and that ϕ restricts to a well defined permutation of
E(H) ⊆ E(G) since we are deleting full orbits of edge-sets. If follows that (πϕπ−1)|E(H) = ϕ|E(H). Now
for each vertex v in H, π−1(v) is either a single vertex or corresponds to a connected component of the
subgraph of G on orbitϕ(C). As such πϕπ−1(v) is well defined. For each edge e in H, there is a well-
defined edge e′ = π−1(e) such that the endpoint functions hH and hG satisfy πhG(e′) = hHπ(e′) and
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hGπ
−1(e) ∈ π−1hH(e). These along with the fact that πϕπ−1(v) is well defined on the vertices of H yields

the following which tells us that that πϕπ−1 is a well-defined automorphism on H.

hHπϕπ
−1(e) = hHπϕ(e′) = πhGϕ(e′) = πϕhG(e′) = πϕhGπ

−1(e) = πϕπ−1hH(e)

2.3.2 Surface orbit minors

Let ϕ be a cellular automorphism of G in S and let C,D ⊂ E(G) be such that

(M1) orbitϕ(C) ∩ orbitϕ(D) = ∅,
(M2) the subgraph of orbitϕ(C) in G is acyclic,

(M3) no connected component of orbitϕ(C) intersects two connected components of fix(ϕ),

(M4) G\orbitϕ(D) is connected and cellularly embedded in S,

(M5) the points of fix(ϕ) on S satisfy the structural criterion in Proposition 2.6 with respect to the induced
embedding of G/orbitϕ(C)\orbitϕ(D).

In this case we callG/orbitϕ(C)\orbitϕ(D) a surface orbit minor with respect to ϕ. The cellular automorphism
of H in S given in Proposition 2.11 we will denote by ϕ|H .

Proposition 2.11. Let ϕ be a cellular automorphism of G in S and let H = G/orbitϕ(C)\orbitϕ(D) be
a surface orbit minor. If ρ is the projection map of F (G) to F (G\orbitϕ(D)) and the identity map on
G \ orbitϕ(D) and π is the projection map from G\orbitϕ(D) to H and the identity map on F (G\orbitϕ(D)),
then πρϕρ−1π−1 is a well-defined cellular automorphism on H in S.

Write G′ = G \ orbitϕ(D). If f is an oriented face of H then it has a designated starting vertex v with
a choice of direction along the underlying 2-cell. As such while there is only a single choice of 2-cell and
direction in G′ for π−1(f), there may be several choices of a designated vertex. However, all of these choices
necessarily belong to the connected subgraph π−1(v), so for our purposes the choice may be made arbitrarily.
Thus, if θ is any dihedral symmetry of f then π−1(θf) = θ′π−1(f) for some dihedral symmetry θ′.

Note also that π−1∂H(f) is not defined since ∂H(f) is not simply a subgraph. In this specialized case we
define π−1∂H(f) to be ∂G′π

−1(f).

Proof of Proposition 2.11. If f1, f2 ∈ ~F (G) share a boundary edge e, then ϕ(f1) and ϕ(f2) share the boundary
edge ϕ(e). As such ρϕρ−1 is well-defined on ~F (G′) and we get that ∂G′ρϕρ

−1(f) = ρϕρ−1∂G′(f) for any
f ′ ∈ ~F (G′).

Now for any f ∈ ~F (H) we have an oriented face f ′ = π−1(f) ∈ ~F (G′) as discussed above; furthermore,
we get that ∂Hπ(f ′) = π∂G′(f

′). So now

∂Hπρϕρ
−1π−1(f) = π∂G′ρϕρ

−1π−1(f) = πρϕρ−1∂G′π
−1(f) = πρϕρ−1π−1∂H(f).

Similarly, for any dihedral symmetry θ we get that

πρϕρ−1π−1(θf) = θπρϕρ−1π−1(f).

By the definition of surface orbit minors and Proposition 2.11 we get Proposition 2.12.

Proposition 2.12. If ϕ is a cellular automorphism of G in S and H is a surface orbit minor of G with
respect to ϕ, then there is a bijection between fix(ϕ) and fix(ϕ|H) preserving isolation and index.

Proposition 2.13. Suppose ϕ is a cellular automorphism of G in S. The action of ϕ is uniquely determined

by the action of ϕ|H on any nontrivial surface orbit minor H of G and, in particular, |ϕ| =
∣∣∣ϕ|H ∣∣∣.
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Proof. We need only show that our result holds for H = G/orbitϕ(e) and H = G\orbitϕ(e) for a single edge
e and then the result in general follows by induction.

If H = G/orbitϕ(e), then let E1, . . . , Em be the connected components (necessarily acyclic, by definition
of surface orbit minor) of the subgraph of G on edges orbitϕ(e). The surface orbit minor H is obtained from
G by contracting these subgraphs E1, . . . , Em and obtaining vertices v1, . . . , vm which form a single orbit
under ϕ|H . Now take a small disk neighborhood Di around each vi. There is an induced dihedral action ϕm

on Di and ϕ acts in a prescribed way on the set of disks D1, . . . , Dm. The decontraction of Ei can be made
to occur inside the disk Di and the resulting configuration must be compatible with the dihedral action ϕm;
furthermore, the action of ϕ on the set of disks has not changed.

If H = G\orbitϕ(e), then let F1, . . . , Fm be the faces of H in which edges from orbitϕ(e) were deleted.

There is an induced dihedral action ϕm on any orientation ~Fi of Fi. So now |ϕ|/m edges of orbitϕ(e) are

added to ~Fi to obtain G in a way that is compatible with the dihedral action ϕm on ~Fi.

In each of the two previous paragraphs, |ϕ| =
∣∣∣ϕ|H ∣∣∣ by Proposition 2.2.

Proposition 2.14. If ϕ is a cellular automorphism of G1 in S, G2 in S is a surface orbit minor of G1 in
S with respect to ϕ, and G3 is a surface orbit minor of G2 in S with respect to ϕ, then G3 is a surface orbit
minor of G1 in S with respect to ϕ.

Proof. Say that Gi+1 = Gi/orbitϕ(Ci)\orbitϕ(Di). That (M1), (M3), and (M4) hold for orbitϕ(C1 ∪ C2) and
orbitϕ(D1 ∪D2) is immediate. That (M2) holds follows from the fact that if orbitϕ(C1 ∪C2) contains a cycle
yet orbitϕ(C1) is acyclic in G1, then orbitϕ(C2) must contain a cycle in G2. That (M5) holds comes from the
fact that G3 in S is a surface orbit of G2 in S which is a surface orbit minor of G1 in S.

2.3.3 Augmentation

Given an order-n cellular automorphism ϕ of G in S, it will become necessary later to move all of the isolated
points of fix(ϕ) off of G and include all of the ovals in G. We do this by a process we call augmentation in
which we take ϕ on G in S and construct a graph G in S, described below, on which ϕ naturally induces a
cellular automorphism which we also denote by ϕ. We call G the augmentation of G.

For each isolated pseudofixed point in the center of an edge (loop or link) of G, we replace the edge with
the configuration shown in Figure 2.15 to obtain graph G′. There is a natural induced action of ϕ on G′ in
S and there is no isolated pseudofixed point of ϕ on the midpoint of an edge in G′. If there are no isolated
pseudofixed points in the centers of edges of G, then let G′ = G.

For isolated pseudofixed points at vertices of G′ we replace small neighborhoods around these vertices
with configurations as shown in Figure 2.15 to obtain a graph G′′. Note that the cycles resulting from these
replacements are pairwise vertex disjoint. Again, there is a natural induced action of ϕ on G′′ in S and each
isolated pseudofixed point of ϕ is now in the center of a face of G′′. If there are no isolated pseudofixed points
at the vertices of G′, then let G′′ = G′.

Figure 2.15.

* *

* *

If O is an oval of ϕ on G′′ in S, then for each segment g of O in the interior of a face of G′′ in S, replace
g with the appropriate configuration as shown in Figure 2.16. Do this for all such segments and let G be the
graph obtained. If there are no such segments, then let G = G′′. There is a natural induced action of ϕ on
G in S and all ovals of ϕ are now cycles in G. We call these cycles oval-cycles.
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Figure 2.16.

g
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If ϕ is a cellular automorphism of G in S and if G 6= G, then we say that ϕ is augmentable.

2.3.4 Reducing cellular automorphisms

Given two cellular automorphisms ϕ of G in S and ψ of H in S, we say that ϕ reduces to ψ (which we denote
by ϕ  ψ) when there is a surface orbit minor K of G and a cellular isomorphism η : K → H such that
ηϕ|K = ψη. We say that ϕ is irreducible when there is no nontrivial surface orbit minor of G in S.

Proposition 2.17. Let ϕ be a cellular automorphism of G in S.

• If ϕ is pseudofree, then there is a surface orbit minor H of G in S such that ϕ|H is irreducible.

• If ϕ is not pseudofree, then there is a surface orbit minor H of G in S such that H = H and any
reduction of ϕ|H is obtained after deleting edges on oval cycles and so is augmentable.

Proof. For the first part, delete as many orbits of edges as possible and then contract as many orbits of edges
as possible. For the second part, since ϕ takes oval cycles to oval cycles we can delete as many orbits of
non-oval edges as possible and then contract as many orbits of edges, including oval edges, as possible.

A non-pseudofree cellular automorphism ϕ of G in S whose reductions are all obtained by deleting edges
on oval cycles (as in the second part of Proposition 2.17) is said to be oval-irreducible. So now our definitions
of augmentability, reductions, and irreducibility along with Propositions 2.12 and 2.13 tell us that we can
effectively describe all cellular automorphisms of S and their pseudofixed points by a complete catalog of all
irreducible and oval-irreducible cellular automorphisms of non-augmentable embeddings in S.

3 Quotients and lifts

Given a topological space X and automorphism ϕ of X, we denote the quotient space by X/〈ϕ〉. Given a
cellular automorphism of G in a closed surface S, Proposition 2.6 implies that S/〈ϕ〉 is a surface with holes
where the boundaries of the holes correspond to the orbits of the ovals of fix(ϕ). To ensure that G/〈ϕ〉 is
a graph we need only require that ϕ have no pseudofixed point in the center of an edge. (The existence
of such pseudofixed points would require the use of “half edges.”) Given the projection π : S → S/〈ϕ〉, let
B = π(fix(ϕ)). The isolated points in B are called the branch points of π. In [18] isolated points of fix(ϕ)
are called “prebranch points” of π. Of course we refer to these as the isolated pseudofixed points of ϕ.

3.1 Graph constructions

Suppose that σ is a Zn-voltage assignment on G. So now Gσ has an associated graph automorphism βσ : Gσ →
Gσ given by βσ(vb) = vb+1 and βσ(eb) = eb+1. Note that βσ is a free graph automorphism, that is, there are
no points on Gσ that are fixed by any power of βσ. We call this the basic automorphism of Gσ associated to
σ. Proposition 3.1 is an elaboration of Theorem 2.4.5 of [18] for cyclic groups.

Proposition 3.1. If ϕ is a free automorphism of a connected graph G, then there is a Z|ϕ|-voltage assignment
σ on G/〈ϕ〉 and a graph isomorphism ψ : (G/〈ϕ〉)σ → G such that ψβσ = ϕψ up to reversal of orientations
on loops.
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Lemma 3.2. If ϕ is a free automorphism of a graph G and C is a cycle in G, then C/〈ϕ〉 contains a cycle.

Proof. If C is a loop, then the result follows because ϕ is free. Suppose then that C has length at least 2 and
let π denote the projection G → G/〈ϕ〉. Suppose for the sake of contradiction that π(C) is acyclic. Then
π(C) is a forest, so has a vertex v′ of degree 1. Let e′ be the edge in π(C) incident to v′, let v0 be a vertex
in π−1(v′) ∩ C and let e0 and e1 be the edges of C incident to v0. Thus π(e0) = π(e1) = e′, which implies
ϕk(e0) = e1 for some k < |ϕ|. Since v0 is not pseudofixed, we must have ϕk(v0) = v1 where v1 is the other
vertex incident to e1. But then e′ = π(e1) is a loop, a contradiction.

Proof of Proposition 3.1. Let π denote the covering map G → G/〈ϕ〉, and let n = |ϕ|. Note that G/〈ϕ〉 is
connected and let T be a spanning tree in G/〈ϕ〉. We claim that π−1(T ) consists of n vertex-disjoint copies of
T . This can be shown inductively on subtrees S0 ⊂ · · · ⊂ Sm where S0 is a single vertex, Sm = T and Si has
i edges. In the base case, since ϕ is free, π−1(S0) is n distinct vertices, which is n distinct copies of S0. Now
assume that π−1(Si) is n vertex-disjoint copies of Si and consider the single edge ei+1 in E(Si+1) \ E(Si).
Since ϕ is free, π−1(ei+1) is n distinct copies of ei+1 and these must all have one endpoint on corresponding
vertices in the components of π−1(Si). The other end must be unattached because otherwise the symmetry
provided by ϕ will yield a cycle in π−1(Si+1), which by Lemma 3.2 yields a cycle in Si+1, a contradiction.
Hence π−1(Si+1) is n vertex-disjoint copies of Si+1.

For any vertices u, v ∈ V (G) in the same component of π−1(T ), there is a uv-path γ connecting them
in that component and so for any k we have that ϕk(γ) is a ϕk(u)ϕk(v)-path in a component of π−1(T ).
Therefore, if we arbitrarily choose one component of π−1(T ) and call it T0, then ϕ induces a labeling
T1, . . . , Tn−1 on the remaining components of π−1(T ) where for any vertex v ∈ Ti and any k we have
ϕk(v) ∈ Ti+k.

Let e be any edge of G/〈ϕ〉 not in T . Write π−1(e) = {e0, . . . , en−1} where t(ei) ∈ Ti, and so ϕk(e0) = ek.
Now if h(e0) ∈ Tj , then we have that

h(ek) = hϕk(e0) = ϕkh(e0) ∈ Tj+k.

So now define a Zn-voltage assignment σ on G/〈ϕ〉 by σ(e) = 0 for all edges e in T , and for all edges e 6∈ T
define σ(e) = j, where h(e0) ∈ Tj .

Now consider the derived graph (G/〈ϕ〉)σ. The spanning tree T in G/〈ϕ〉 lifts to n vertex-disjoint copies
of T and, since the voltage on every edge in T is zero, the subscripts on the vertices in each copy of T are
all the same. Let Hi be the copy of T whose vertices all have subscript i. So now define ψ : (G/〈ϕ〉)σ → G
by taking each vertex in Hi to its corresponding vertex in Ti. The definition of σ guarantees that this is an
isomorphism. Now βσ takes each vertex and incident edges in Hi to the corresponding vertex and incident
edges in Hi+1 as ϕ takes each vertex and edges in Ti to the corresponding vertex and edges in Ti+1. Thus
ψβσ = ϕψ up to reversal of orientations on loops.

3.2 Pseudofree constructions

Let ϕ be a cellular automorphism of G in S of order n. When ϕ is pseudofree, the quotient S/〈ϕ〉 is again a
surface; its connections with voltage graphs and derived embeddings are discussed in detail in [18, §§4.1–4.2].
One proposition from there that we will use repeatedly is the following. A Möbius walk is a closed walk with
an odd number of orientation reversals along it, that is, a closed walk with a non-orientable neighborhood.

Proposition 3.3. If G is embedded in a nonorientable surface S and is given voltage assignment σ, then
the following are equivalent.

(1) The derived surface Sσ is nonorientable.

(2) There is a Möbius walk w of G in S with σ∗(w) = 0.

(3) There is a Möbius walk w of G in S with σ∗(w) of odd order in the voltage group.
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Proposition 3.4. Suppose that ϕ is a pseudofree cellular automorphism of G in S and π : S → S/〈ϕ〉 is the
corresponding projection map. If π(G)/C\D is a surface minor such that C ∩D = ∅, C is acyclic in π(G),
and each branch point of π is the center of its own face, then G/π−1(C)\π−1(D) is a surface orbit minor of
G in S.

Proof. Let n = |ϕ|. Because every pseudofixed point of ϕ is in the center of a face of G and is not on G, ϕ is
free on G. Proposition 3.1 gives us a Zn-voltage assignment σ on π(G) and an isomorphism ψ : (π(G))σ → G
such that ψβσ = ϕψ.

Now we verify that conditions (M1)–(M5) hold. Because C ∩D = ∅, we get that π−1(C) ∩ π−1(D) = ∅.
Because C is acyclic in π(G), Lemma 3.2 gives us that π−1(C) is acyclic in G. Because all of the pseudofixed
points of ϕ are off of G, we get condition (M3). Because the embedding of G in S is isomorphic to a derived
embedding from a voltage-graph construction we get properties (M4) and (M5).

Proposition 3.5. If ϕ, G, S, H = π(G)/C\D, and H̃ = G/π−1(C)\π−1(D) are as given in Proposition
3.4, then H̃/〈ϕ|H̃〉 = H.

Proof. Given that H̃ is defined by contracting and deleting the orbits of edges corresponding to the edges
contracted and deleted in the quotient, we get our desired result.

A standard technique An argument that we shall use repeatedly in the derivation of our catalogs of
cellular automorphisms is as follows. Given a pseudofree cellular automorphism ϕ of G in S we also have the
ϕ-action on G in S. Given the quotient G/〈ϕ〉 in S/〈ϕ〉, we choose a surface minor H of G/〈ϕ〉 satisfying
the conditions in Proposition 3.4. By Proposition 3.4, H corresponds to a surface orbit minor H̃ of G in S.
Since all of the pseudofixed points of ϕ|H̃ are off of H̃, ϕ|H̃ is free on H. This fact along with Proposition

3.5 allows us to apply Proposition 3.1 to get a Z|ϕ|-voltage assignment σ on H̃/〈ϕ|H̃〉 that reconstructs H̃
and ϕ|H̃ . We can then conclude that ϕ βσ.

Another tool we use is the Riemann-Hurwitz Equation; see for example [18, §4.2.4]. The deficiency of a
branch point x is defined to be n− |π−1(x)| and denoted by def(x).

Theorem 3.6 (Riemann-Hurwitz Equation (Form 1)). Let S be a closed surface. If π : S̃ → S is an n-sheeted
covering map with set Y of isolated branch points, then

χ(S̃) = nχ(S)−
∑
y∈Y

def(y).

A second useful form for the Reimann-Hurwitz equation arises when π is defined by a voltage-graph lifting
construction using group G. In this case, the branch points of π are isolated, n = |G|, and for each y ∈ Y
there is an integer vy | n such that |π−1(y)| = n/vy. We call vy the order of y and note that if y is contained
in the face f of the voltage graph embedded in S and g is the net voltage around the face walk of f , then
vy = |g|.

Theorem 3.7 (Riemann-Hurwitz Equation (Form 2)). If π : S̃ → S is an n-sheeted covering map defined by
a voltage-graph lifting construction using group G of order n and Y is the set of isolated branch points, then

χ(S̃) = n

χ(S)−
∑
y∈Y

(
1− 1

vy

) .

3.3 Nonpseudofree constructions

We utilize two different constructions for reducing nonpseudofree cellular automorphisms to pseudofree ones:
the cutting construction and the folding quotient.
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3.3.1 The cutting construction

Let ϕ be a non-pseudofree cellular automorphism of G in S. If the ovals of ϕ do not separate S, then cut G
together with S along its oval cycles to make two copies of each oval cycle having an annular neighborhood
and one copy of double the length of each oval cycle having a Möbius neighborhood. This results in a graph
G	 properly embedded in surface S	 with hole cycles being the new cycles produced by cutting. The action
of ϕ naturally induces a cellular automorphism ϕ	 on G	 in [S	]• that is pseudofree, has the same order as
ϕ, and takes capped faces to capped faces.

As an example consider the embedding G′ in the torus shown in Figure 3.8 with free order-12 cellular
automorphism ϕ defined by i 7→ (i + 1). Cut out the circular faces shown and then paste the ith hole to
the (i + 6)th hole by identifying the points corresponding by ϕ to obtain a graph G embedded in the non-
orientable surface S of characteristic −12. We now have that ϕ is naturally defined on G in S and is an
order-12 non-pseudofree cellular automorphism with G	 = G′.

Figure 3.8.
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3.3.2 Folding quotients and unfolding lifts

Given a non-pseudofree involutory cellular automorphism ϕ of G in closed surface S, let π : S → S/〈ϕ〉 be the
corresponding projection map. We now get that π(S) is a surface with holes and π(G) is properly embedded
in π(S) where the hole-cycles are isomorphic copies of the oval cycles and the image of each isolated fixed
point of ϕ is the center of a face of π(G) in π(S). We call this quotient a folding quotient.

Proposition 3.9 is an analogue of the Riemann-Hurwitz equation for nonpseudofree involutory cellular
automorphisms.

Proposition 3.9. If ϕ is an involutory cellular automorphism of G in S, s is the number of ovals in fix(ϕ),
r is the number of isolated fixed points, and π the corresponding projection map, then π(S) has s holes and

χ([π(S)]•) =
χ(S)

2
+
r

2
+ s.

Proof. Since for G in S the isolated fixed points are in the centers of faces and the numbers of vertices and
edges in oval cycles are equal we have that

χ([π(S)]•) = χ(π(S)) + s

= |V (π(G))| − |E(π(G))|+ |F (π(G))|+ s

= |V (G)|
2 − |E(G)|

2 + |F (G)|+r
2 + s

= χ(S)
2 + r

2 + s

Let G be properly embedded in a compact surface S with holes and let σ : E(G) → Z2 be a voltage
assignment. Consider the usual derived embedding of Gσ in ([S]•)σ. Observe that ([S]•)σ is either a closed
surface or a disjoint union of two homeomorphic closed surfaces. If C is a hole-cycle of G in S, then if
σ∗(C) = 0 we get that C lifts to two cycles C0 and C1 in Gσ, each bounding a face in ([S]•)σ. If σ∗(C) = 1
then C lifts to a single cycle C ′ bounding a face in ([S]•)σ having twice the length of C. In the former case
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we remove the two open faces bounded by C0 and C1 and then identify the corresponding vertices and edges
of C0 and C1; this results in a cycle with an annular neighborhood (see Figure 3.10).

Figure 3.10.
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In the latter case we remove the face bounded by C ′ and identify the boundary with itself via the antipodal
map; this results in a cycle with a Möbius neighborhood (see Figure 3.11). These operations yield a graph
Ĝσ embedded in a closed surface which we denote by Ŝσ. We call Ĝσ in Ŝσ the unfolding lift of G from
σ. Note that (Ĝσ)	 in (Ŝσ)	 is the same as Gσ in ([S]•)σ when ([S]•)σ is connected. (We do not allow the
cutting construction when the ovals separate the surface.)

Figure 3.11.
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Let G be properly embedded in a compact surface S with holes. We label the vertices of Gσ in ([S]•)σ

as with the usual voltage-graph lifting construction. The vertices of Ĝσ in Ŝσ that arise from vertex iden-
tifications are then relabeled by removing the subscripts. The basic automorphism βσ on Gσ in ([S]•)σ

(whether connected or not) naturally induces a cellular automorphism of Ĝσ which we also call βσ which is
an involution with oval-cycles being the lifts of the hole-cycles. Proposition 3.12 illustrates βσ in the case
that σ∗ = 0.

Proposition 3.12. Let Gσ be an unfolding lift of G embedded in S with at least one hole. If σ∗ = 0 then Ŝσ

consists of two copies of G in S identified along the holes, and βσ reflects the copies of G across the boundary
of the holes.

Proof. If σ∗ = 0 then, up to isomorphism, we may assume that σ = 0 as well, and so Sσ consists of two
disjoint copies of G in S. After identifying holes the assertion follows.

Proposition 3.13 is the analogue of Proposition 3.1 for involutory cellular automorphisms.

Proposition 3.13. Suppose ϕ is an involutory cellular automorphism of G in S with at least one oval. There
is a Z2-voltage assignment σ on H = G/〈ϕ〉 in S/〈ϕ〉 and an isomorphism ψ : Ĥσ → G such that ψβσ = ϕψ.

Proof. Suppose that the ovals separate S. By Proposition 2.9 the ovals separate S into two homeomorphic
components, so setting σ ≡ 0 gives the desired conclusion by Proposition 3.12.

Suppose now that the ovals do not separate S. Consider G	 in [S	]• and the corresponding ϕ	 action on
this embedding. We must have that G	/〈ϕ	〉 = G/〈ϕ〉; we call this graph H, and note that H is embedded
in [S	]•/〈ϕ	〉 = [S/〈ϕ〉]•. Now by Proposition 3.1, there is a Z2-voltage assignment σ on H and a graph
isomorphism ψ0 : Hσ → G	 such that ψ0βσ = ϕψ0. Now ψ0 naturally induces an isomorphism ψ : Ĥσ → G
such that ψβσ = ϕψ.

Proposition 3.14 is the analogue of Proposition 3.4 for involutory cellular automorphisms.
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Proposition 3.14. Suppose that ϕ is an involutory cellular automorphism of G in S with at least one oval
and π : S → S/〈ϕ〉 is the corresponding projection map. If π(G)/C\D is a surface minor in π(S) such that

(i) C ∩D = ∅,
(ii) each connected component of C in π(G) intersects at most one hole-cycle,

(iii) C is acyclic in π(G) and the only cycles in the union of C with the hole-cycles of π(G) are the hole-cycles
themselves, and

(iv) each image of an isolated fixed point is the center of its own face,

then G/π−1(C)\π−1(D) is a surface orbit minor of G in S.

Proof. Proposition 3.13 gives us a Z2-voltage assignment σ on π(G) and an isomorphism ψ : π̂(G)σ → G
such that ψβσ = ϕψ. Now condition (i) in the quotient yields condition (M1). Condition (ii) in the quotient
and the fact that G touches none of the isolated fixed points yields condition (M3). Condition (iii) in the
quotient guarantees that π−1(C) is acyclic in G by the following argument. First, if Z is a cycle in π−1(C),
then Z must intersect an oval cycle H in G because the corresponding edge set in π(G)σ is acyclic by Lemma
3.2. Thus there is a path γ in Z which is edge disjoint from H yet has both endpoints in H. However now
π(γ∪H) ⊂ C∪π(H) contains a cycle that is not a hole-cycle, a contradiction of (iii). Thus we have condition
(M2) for G. Because the embedding of π(G) in π(S) is proper and satisfies (iv) and because the embedding
of G in S is isomorphic to a derived embedding from an unfolding-lift construction we get properties (M4)
and (M5).

Proposition 3.15. If ϕ, G in S, H = π(G)/C\D, and H̃ = G/π−1(C)\π−1(D) are as given in Proposition
3.14, then H̃/〈ϕ|H̃〉 = H.

Proof. By the same reasoning as in Proposition 3.5.

3.3.3 Lifting cellular automorphisms to unfolding lifts

Let G be a connected graph, ϕ a free automorphism of G, and σ a Z2-voltage assignment on G such that
for any closed walk w, σ∗(w) = σ∗(ϕ(w)). Choose a base vertex b in G and for each other vertex v, let wv
be a vb-walk. In the derived graph Gσ, the walk wv lifts to two walks wv,i for i ∈ Z2 from vi to bσ(wv)+i.
For a ∈ Z2, define ϕ↑σ,a on the vertices of Gσ by first setting ϕ↑σ,a(bi) = ci+a where ϕ(b) = c and then setting
ϕ↑σ,a(vi) = ui+σ∗(wv)+a+σ∗(ϕ(wv)) where ϕ(v) = u (see Figure 3.16). Proposition 3.17(1) tells us that ϕ↑σ,a is an
automorphism on Gσ and that this definition on the vertices completely determines the action on the edges.

Figure 3.16.
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φ(  )
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Proposition 3.17. Let ϕ↑σ,a be as defined above, n = |ϕ|, and π be the projection map from Gσ to G.

(1) ϕ↑σ,a is a well-defined automorphism of Gσ that is independent of the choice of b and the wv’s and
satisfies ϕπ = πϕ↑σ,a.

(2) |ϕ↑σ,a| ∈ {n, 2n} and ϕ↑σ,a is free on Gσ.

(3) If n is odd, then there is a ∈ Z2 such that |ϕ↑σ,a| = 2n and |ϕ↑σ,a+1| = n.

(4) If n is even, then |ϕ↑σ,a| = |ϕ
↑
σ,a+1|; furthermore |ϕ↑σ| = 2n iff for every vϕ(v)-walk w in G,

σ∗(w,ϕ(w), . . . , ϕn−1(w)) = 1.
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(5) If ϕ is a cellular automorphism of G in S, then ϕ↑σ,a induces a cellular automorphism of Gσ in Sσ.

Proof. (1) This is immediately implied by the results in [22, §5].
(2) By [22, Props. 5.1,5.2], (ϕ↑σ,a)

n either exchanges the two vertices in each fiber or is the identity map.
Also, we must have that n ≤ |ϕ↑σ,a| ≤ 2n which then gives us that |ϕ↑σ,a| ∈ {n, 2n}. Now suppose by way
of contradiction that x is a point in Gσ, necessarily either a vertex or center of an edge, that is fixed by
(ϕ↑σ,a)

k 6= id. This implies that π(x) is fixed by ϕk and so since ϕ is free we must have that k = n and
|ϕ↑σ,a| = 2n. By [22, Prop. 5.1], however, (ϕ↑σ,a)

n has no fixed points.
(3) Let β be the automorphism of Gσ that exchanges the vertices in each fiber. As in the proof of (2) above,
|ϕ↑σ,a| is determined by whether (ϕ↑σ,a)

n is β or the identity. Evidently βϕ↑σ,a = ϕ↑σ,a+1 and β commutes with

these maps as well. Thus (ϕ↑σ,a)
n, (ϕ↑σ,a+1)n ∈ {id, β} and, because n is odd, we have

(ϕ↑σ,a+1)n =
(
βϕ↑σ,a

)n
= βn

(
ϕ↑σ,a

)n
= β

(
ϕ↑σ,a

)n 6= (ϕ↑σ,a)n .
(4) Similar to the proof of (3) we have that (ϕ↑σ,a)

n = (ϕ↑σ,a+1)n and so |ϕ↑σ,a| = |ϕ
↑
σ,a+1|. Now given a closed

walk γ = w,ϕ(w), . . . , ϕn−1(w) for some vϕ(v)-walk w in G, we have (ϕ↑σ,a)
n(vi) = vi+na+σ∗(γ) = vi+σ∗(γ)

because n is even. Thus (ϕ↑σ,a)
n = id when σ∗(γ) = 0 and (ϕ↑σ,a)

n = β when σ∗(γ) = 1.
(5) Given an oriented face f of G in S (with starting vertex v), there are two oriented faces of Gσ in Sσ

that project down to f . We denote these by f ↑0 and f ↑1 with starting vertices v0 and v1, respectively. Note
that the underlying unoriented faces of f ↑0 and f ↑1 may be the same, in which case f ↑0 and f ↑1 differ by a 180◦

rotation. Suppose that g = ϕ(f) and w = ϕ(v). If ϕ↑σ,a(vi) = wj then define ϕ↑σ,a(f
↑
i ) = g↑j . These definitions

and the fact that ϕ↑σ,a is an automorphism give us that θϕ↑σ,a(f
↑
i ) = ϕ↑σ,a(θf

↑
i ) for a dihedral symmetry θ, and

since ∂ϕ = ϕ∂ we also have ∂ϕ↑σ,a(f
↑
i ) = ϕ↑σ,a∂(f ↑i ).

Proposition 3.18. If G is properly embedded in a surface S with holes, ϕ is a cellular automorphism of G in
[S]• that takes capped faces to capped faces, and σ is a Z2-voltage assignment on G satisfying σ(ϕ(w)) = σ(w)
for all closed walks w, then ϕ↑σ,a induces a cellular automorphism of Ĝσ in Ŝσ. Furthermore, if |ϕ↑σ,a| = 2|ϕ|,
then ϕ↑σ,a is non-pseudofree with oval cycles being the lifts of the hole cycles.

Proof. The first part follows from Proposition 3.17(5) and the fact that ϕ takes capped faces of G in S to
capped faces. Now if |ϕ↑σ,a| = 2|ϕ| = 2k, then (ϕ↑σ,a)

k on Gσ in Sσ is the basic automorphism βσ. So then

(ϕ↑σ,a)
k on Ĝσ in Ŝσ performs reflections around the lifts of the hole-cycles of G in S.

3.3.4 Induced actions on quotients and their fixed points

If ϕ is a non-pseudofree cellular automorphism of G in S where |ϕ| = 2k and G = G then we define ϕ↓ on
the graph G/〈ϕk〉 in S/〈ϕk〉 as follows. First note that the points of S/〈ϕk〉 are the orbits in S under the
action of ϕk. These orbits are of the form {x} where x ∈ fix(ϕk) and {x, ϕk(x)} where x /∈ fix(ϕk), so we
define ϕ↓({x}) = {ϕ(x)} and ϕ↓({x, ϕk(x)}) = {ϕ(x), ϕk+1(x)}. The map ϕ↓ is well defined because, by
Proposition 2.5, ϕ(x) ∈ fix(ϕk) iff x ∈ fix(ϕk).

Proposition 3.19. The map ϕ↓ is an order-k pseudofree cellular automorphism of G/〈ϕk〉 in [S/〈ϕk〉]•
which maps capped faces to capped faces, and furthermore all isolated pseudofixed points of ϕ↓ are images of
isolated pseudofixed points of ϕ and are all off of G/〈ϕk〉.

Proof. Let π : S → S/〈ϕk〉 be the quotient map sending each point to its orbit. First we claim that ϕ↓π = πϕ.
To see this, let x ∈ S. If x ∈ fix(ϕk) then ϕ↓π(x) = ϕ↓({x}) = {ϕ(x)} = πϕ(x). If x 6∈ fix(ϕk) then
ϕ↓π(x) = ϕ↓({x, ϕk(x)}) = {ϕ(x), ϕk+1(x)} = πϕ(x).

Because ϕ on G in S has no pseudofixed points in the centers of edges or pseudofixed segments in the
interiors of faces, G/〈ϕk〉 is a graph and ϕ↓ on G/〈ϕk〉 takes vertices to vertices and edges to edges. We now
claim that ϕ↓ defines an automorphism on G/〈ϕk〉. Denote the head and tail functions on G/〈ϕk〉 by h↓ and
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t↓. Note that h↓π = πh and t↓π = πt. Now we get that ϕ↓h↓ = h↓ϕ↓ and ϕ↓t↓ = t↓ϕ↓ (which makes ϕ↓ an
automorphism of G/〈ϕk〉) because for each π(e) we get that

ϕ↓h↓π(e) = ϕ↓πh(e) = πϕh(e) = πhϕ(e) = h↓πϕ(e) = h↓ϕ↓π(e).

Given a walk e1, . . . , en in G, we write π(e1, . . . , en) for π(e1), . . . , π(en); this is a walk in G/〈ϕk〉 because
h↓π(ei) = πh(ei) = πt(ei+1) = t↓π(ei+1). If we denote the facial boundary function on the embedding of
G/〈ϕk〉 in [S/〈ϕk〉]• by ∂↓ we get that ∂↓π(f) = π∂(f) and so for each π(f) we get

ϕ↓∂↓π(f) = ϕ↓π∂(f) = πϕ∂(f) = π∂ϕ(f) = ∂↓πϕ(f) = ∂↓ϕ↓π(f)

which makes ϕ↓ a cellular automorphism of G/〈ϕk〉 in [S/〈ϕk〉]•.
That |ϕ↓| = k follows from Proposition 2.2. To show that ϕ↓ is pseudofree, suppose by way of contradiction

that O is an oval of ϕ↓ on G/〈ϕk〉. Thus O is fixed by (ϕ↓)k/2. The preimage of O in G, call it π−1(O), is
either two copies of O or a circle of twice the length of O. Since (ϕ↓)k/2 fixes O, it must be that the action of
ϕk/2 exchanges the doubled parts of π−1(O) and thus ϕk fixes π−1(O). Thus the single circle or two circles
of π−1(O) are ovals of ϕ and so O is a hole-cycle in G/〈ϕk〉. Since one side of O is the hole and the other
side is not and since ϕ↓ takes capped faces to capped faces, it cannot be that the action of (ϕ↓)k/2 reflects
around O, a contradiction.

To prove the final claim, suppose for the sake of contradiction that x is an isolated pseudofixed point of
ϕ↓ that is not the image of a pseudofixed point of ϕ. If x has index m < k then any x̂ in π−1(x) in G satisfies
ϕ2m(x̂) = x̂, a contradiction since 2m < 2k.

Proposition 3.20 identifies when it is possible that fix(ϕ↓) 6⊆ fix(ϕk).

Proposition 3.20. If ϕ is a cellular automorphism of G in S with |ϕ| = 2k and fix(ϕ↓) 6⊆ fix(ϕk), then
k = 2r − 1 for some r.

Proof. Say that {x, ϕk(x)} ∈ fix(ϕ↓) where x /∈ fix(ϕk). Thus {x, ϕk(x)} = ϕ↓({x, ϕk(x)}) = {ϕ(x), ϕk+1(x)}.
It cannot be that ϕ(x) = x because then x ∈ fix(ϕ) but x /∈ fix(ϕk), a contradiction. So ϕk+1(x) = x and
therefore there is some minimum integer m > 1 with ϕm(x) = x. So now we get that m | (k+ 1) and m | 2k.
Let p be some prime factor of m. It cannot be that p > 2 because then p | k which implies p - (k + 1), a
contradiction. It follows that p = 2 and so k + 1 is a power of 2.

Proposition 3.21. Let ϕ be a non-pseudofree cellular automorphism of G = G in S of order 2k and
π : S → S/〈ϕk〉 the associated projection map. If σ and ψ are as given in Proposition 3.13, then there is
a ∈ Z2 such that ψ(ϕ↓)↑a,σ = ϕψ.

Proof. We claim that for any closed walk w in π(G) we have σ∗(w) = σ∗(ϕ
↓(w)). Now σ∗(w) is determined

by whether π−1(w) in G ∼= Ĝσ consists of two copies of w or one walk of twice the length of w. Since the
automorphisms ϕ and ϕ↓ preserve walk lengths, this property for w and π−1(w) is the same for ϕ↓(w) and
π−1ϕ↓(w) = ϕπ−1(w) and so σ∗(w) = σ∗(ϕ

↓(w)) which confirms that (ϕ↓)↑a,σ is defined. Now we have that

(ϕ↓)↑a,σ and ψ−1ϕψ are both lifts of ϕ↓ on π̂(G)σ. In [22, p. 931] it is stated that all lifts of ϕ↓ on π(G)σ (and

so also on π̂(G)σ) will be related by compositions with deck transformations. Since we are using Z2-voltages
there are exactly two deck transformations and so (ϕ↓)↑0,σ and (ϕ↓)↑1,σ = βσ(ϕ↓)↑0,σ are the only lifts of ϕ↓ and

therefore one of them is equal to ψ−1ϕψ.

4 Cellular automorphisms of the sphere

Much of the information in this section is implicit in [8, §§4,5]. Denote the sphere by S and the projective
plane by P.
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Rotations Rk,S Given a cycle of length k > 1 with vertices v1, . . . , vk embedded in the sphere with faces
F1 and F2, we define the cellular automorphism Rk,S of order k by vi 7→ vi+1 and Fi 7→ Fi. Note that Rk,S
is pseudofree with two isolated fixed points and is irreducible.

Rotation reflections RR2k,S Given a cycle of length 2k ≥ 2 with vertices v1, . . . , v2k embedded in
the sphere with faces F1 and F2, we define the cellular automorphism RR2k,S by vi 7→ vi+1 and F1 7→ F2.
Note that the pointwise action of RR2,S on the sphere is the usual antipodal map and this is a free cellular
automorphism. For 2k ≥ 4, RR2k,S is pseudofree with two isolated pseudofixed points. Also, RR2k,S is
irreducible.

Oval rotation reflections ORR4k+2,S Given a cycle of length 2k + 1 ≥ 1 with vertices v1, . . . , v2k+1

embedded in the sphere with faces F1 and F2, we define the cellular automorphism ORR4k+2,S by vi 7→ vi+1

and F1 7→ F2. This is not pseudofree and the cycle on v1, . . . , v2k+1 is the oval cycle. Also, ORR4k+2,S is
oval irreducible.

Theorem 4.1 tells us that this catalog of non-augmentable cellular automorphisms of S is complete up to
reducibility.

Theorem 4.1. If ϕ is a cellular automorphism of G in S with G = G, then ϕ reduces to one of (Rk,S)i,
(RR2k,S)i, and (ORR4k+2,S)i for some i.

The following Proposition, appearing in [8, Lemma 2.5], is based on [18, Theorems 6.3.1 and 6.3.2]; we
use it in the proof of Theorem 4.1.

Proposition 4.2. Suppose ϕ is an order-n pseudofree cellular automorphism of G in S. Then one of the
following holds:

(1) S/〈ϕ〉 is the sphere and there are exactly two branch points,

(2) S/〈ϕ〉 is the projective plane, there is exactly one branch point, and n > 2, or

(3) S/〈ϕ〉 is the projective plane, there are no branch points, and n = 2.

Proof of Theorem 4.1. Let n = |ϕ| and let π denote the projection S → S/〈ϕ〉. Suppose first that ϕ is
pseudofree. In Case (1) of Proposition 4.2, it follows from Theorem 3.6 that both branch points of π(S) have
deficiency n− 1 and hence are images of fixed points, call them f1 and f2. Thus we can contract a spanning
tree and delete loops in π(G) to get a surface minor H consisting of a single loop separating π(f1) and π(f2).
The corresponding surface orbit minor H̃ of G in S given by Proposition 3.4 is connected and so is an n-cycle
separating f1 and f2. Because the pseudofixed points of ϕ|H̃ are not on the cycle H̃ the action of ϕ|H̃ on H̃
is rotation rather than reflection and since f1 and f2 are fixed, ϕ|H̃ = (Rn,S)i for some i.

In Case (2) of Proposition 4.2, it follows from Theorem 3.6 that the branch point b has deficiency n− 2
and so is the image of two pseudofixed points b1 and b2. Since ϕ(b1) = b2 we now get that n = 2k ≥ 4 for
some k. Since π(G) is cellularly embedded in π(S) = P, we can contract a spanning tree in π(G) and delete
loops to get a surface minor H consisting of a single loop e embedded noncontractibly which has b in the
center of the single face of the embedding. Let H̃ be the surface orbit minor of G in S given by Proposition
3.4; by Proposition 3.1 there is a Z2k-voltage assignment σ on H such that Hσ ∼= H̃ and βσ = ϕ|H̃ up to
this isomorphism. Since the facial walk bounding b is w = e, e and since the deficiency of b is n − 2 we get
that |σ∗(w)| = |2σ(e)| = n/2 = k. Thus 〈2σ(e)〉 = 〈2〉 and so up to automorphism of Z2k, σ(e) = 1. Thus
Hσ ∼= H̃ is a 2k-cycle and again the action of ϕ|H̃ on H̃ must be rotation rather than reflection. So now
since ϕ(b1) = b2 we get that ϕ|H̃ = (RR2k,S)i for some odd i.

In Case (3) of Proposition 4.2, we again take H in π(S) to be a single loop e with endpoint v embedded
noncontractibly. By Proposition 3.1, there is a Z2-voltage assignment σ on H such that Hσ ∼= H̃ and
βσ = ϕ|H̃ up to this isomorphism. We must then have that Hσ is a 2-cycle and since ϕ has no fixed points
we get that ϕ|H̃ = RR2,S.
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Suppose now that ϕ is not pseudofree and so n = 2k by Proposition 2.8. If O is an oval cycle in G then
since we are in the sphere, O must be the only oval cycle in G and so evidently ϕk  ORR2,S. Proposition
2.8 now implies that ϕ (ORR4t+2,S)i for some odd i.

5 Cellular automorphisms of the projective plane

Rotations R2k,P Consider a cycle of length k with edges e1, . . . , ek embedded as a noncontractible closed
curve in P. This is a single-faced embedding whose lone facial boundary walk is w = e1, . . . , ek, e1, . . . , ek. We
define the cellular automorphism R2k,P to be the rotation of the single face by 180◦

k , which gives ei 7→ ei+1.
Notice that R2k,P has a fixed point in the center of its single face and has oval cycle e1, . . . , ek and so is not
pseudofree. Notice also that if k = 2m+ 1 ≥ 3 then (R2k,P)2 is pseudofree with a single pseudofixed point.
The cellular automorphism R2k,P is oval-irreducible and if k = 2m+ 1 ≥ 3 then (R2k,P)2 is irreducible.

Theorem 5.1 tells us that this catalog of non-augmentable cellular automorphisms of P is complete up to
reducibility.

Theorem 5.1. Let ϕ be an order-n cellular automorphism of G in the projective plane with G = G.

(1) If ϕ is pseudofree, then ϕ (R2n,P)2i for n odd and some i.

(2) If ϕ is not pseudofree, then n = 2k and ϕ (R2k,P)i for some i.

Note that Theorem 5.1 implies that there are no even-order pseudofree cellular automorphisms of P.
Proposition 5.2 is an analogue of Proposition 2.8 for ovals with Möbius neighborhoods.

Proposition 5.2. Let ϕ be a cellular automorphism of G in S whose set of pseudofixed points fix(ϕ) contains
an oval O with a Möbius neighborhood in S. If m is the index of O, then we get the following.

(1) The action of ϕm restricted to O itself is rotation rather than reflection.

(2) If r is the order of the rotation action of ϕm restricted to O, then |ϕ| = 2rm

Proof. Extend G to a graph G′ with sufficiently high representativity so that the faces incident to O form
a Möbius band M with O along its core. So now since ϕm(O) = O, we also get that ϕm is a cellular
automorphism of G′|M in [M ]•. The action of ϕm on O is thus a rotation by Theorem 5.1. Furthermore, if r
is the order of this rotation, then ϕrm is the first power of ϕ that fixes O pointwise. As such rm = |ϕ|/2.

Proof of Theorem 5.1. Let n = |ϕ| and let π denote the projection P → P/〈ϕ〉. First we assume that ϕ
is pseudofree. We begin with numerical arguments to show that π(P) is the projective plane and that π
has a single branch point of deficiency n − 1. Let Y be the set of branch points of π. Theorem 3.6 yields
1 = nχ(π(P))−

∑
y∈Y def(y) so χ(π(P)) > 0, and π(P) is either the sphere or projective plane. The former

is impossible, since orientable surfaces can only lift to orientable surfaces. It follows that χ(π(P)) = 1 and
so we have 1 = n−

∑
y∈Y def(y), i.e., ∑

y∈Y
def(y) = n− 1. (1)

Now Theorem 3.7 gives

1

n
= 1− |Y |+

∑
y

1

vy
≤ 1− |Y |+ |Y |

2
= 1− |Y |

2
.

It follows that |Y | ≤ 2 − 2/n and so |Y | ≤ 1. Now |Y | 6= 0 as this would contradict (1) and so there is a
single branch point which by (1) has deficiency n− 1 and is therefore the image of a fixed point, call it y.

Since π(G) in π(P) is a cellular embedding, we can contract a spanning tree in π(G) and then delete
loops to obtain a surface minor H consisting of a single loop e embedded non-contractibly. Let H̃ be the
surface orbit minor of G in P corresponding to H as in Proposition 3.4. Proposition 3.1 gives us that H̃ is
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a Zn-voltage lift of a loop and so by connectedness H̃ is an n-cycle and must be embedded non-contractibly.
Since the single face of H̃ in P contains the fixed point y, the action of ϕ|H̃ on this single face must be a
rotation of order n (rather than a reflection) and so ϕ|H̃ = (R2n,P)j for some j such that n /∈ 〈j〉 ⊂ Z2n and
|〈j〉| = n. Since 〈2〉 is the only subgroup of Z2n of order n, we now get that n is odd and j is even and is
relatively prime to n.

Now assume that ϕ is not pseudofree. If ϕ is an involution, then Proposition 3.9 yields

χ([π(P)]•) =
1

2
+ s+

r

2
≤ 2.

Now since s ≥ 1 and χ([π(P)]•) must be a positive integer, we get that s = 1 and r = 1. If ϕ has |ϕ| = 2k,
then ϕ also has just one oval. This oval must be embedded noncontractibly and so does not separate P, and
thus we get that [P	]• is the sphere with a single capped face f . It follows that ϕ	 has a fixed point in
f and therefore by Theorem 4.1, ϕ	 reduces to (R2k,S)i for some i. Evidently, since G = G, ϕ reduces to
(R2k,P)i.

6 Cellular automorphisms of the torus

6.1 A catalogue of cellular automorphisms of the torus

We note that the definitions in this section are all up to choice of basis for homology. Changes in basis are
accomplished through Dehn twists, which do not change the cellular structure.

Grid rotations GRn,a,b,T Suppose that a, b ∈ {1, . . . , n − 1} ⊂ Z, 〈a, b〉 = Zn, 〈a〉 6= Zn, and 〈b〉 6= Zn.
Without loss of generality say that a > b. Then there is r, s ∈ Z such that g = ra + sb = gcd(a, b). Choose
r and s so that |r| + |s| is as small as possible. Since every linear combination of a and b is a multiple of g
and since 〈a, b〉 = Zn, we get that 〈g〉 = Zn.

Note that in Zn, |a| = n
gcd(a,n) and |b| = n

gcd(b,n) and so since Zn = 〈a, b〉 = 〈a〉+ 〈b〉 we get that

n =
|a||b|

|〈a〉 ∩ 〈b〉|
=

n2

gcd(a, n) gcd(b, n)|〈a〉 ∩ 〈b〉|

and so
|〈a〉 ∩ 〈b〉| = n

gcd(a, n) gcd(b, n)

is an integer, call it t. We define the (n, a, b)-torus-grid as follows. We first take the disjoint union of gcd(a, n)
copies of C|a| in the (1, 0)-homology class. This disjoint union contains n vertices. We can add the edges of
gcd(b, n) disjoint |b|-cycles in the (1, t) homology class where each |a|-cycle and each |b|-cycle intersect in t
vertices. For example, the first graph in Figure 6.1 is the (30, 5, 3)-torus-grid.

Figure 6.1.

As in Figure 6.1, we can render the (n, a, b)-torus-grid in the unit square where the |a|-cycles are horizontal
and equally spaced and the |b|-cycles are t gcd(b, n) equally spaced lines of slope t. Note that each slanted
line segment of the parallelograms formed in this rendering has rise = 1

gcd(a,n) and run = 1
t gcd(a,n) . Thus,
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given any vertex u in the grid, if we move r vertices to the right along u’s |a|-cycle to vertex v and then move
s vertices up along v’s |b|-cycle to vertex w, the line in the unit square from v to w has slope

s
gcd(a,n)

r
t gcd(b,n) + s

t gcd(a,n)

.

So now since g = ra+sb generates Zn, repeating this move n times will visit every vertex in the graph exactly
once and the line segments described above connecting each successive pair will form a simple-closed curve in
the homology class given by the above slope. This is the cellular automorphism GRn,a,b,T. The second graph
in Figure 6.1 is the (30, 5, 3)-torus-grid along with dashed lines of slope 12 representing the (1, 12)-homology
class along which the rotation is taken.

Note that the grid rotation GRn,a,b,T is free and irreducible.

Spiral rotations SRn,g,T Given any n ≥ 2, let g ∈ {0, . . . , n − 1}. Define the (n, g)-torus-spiral to be
the embedded graph shown in Figure 6.2. Say that Ft is the oriented face with ∂(Ft) = et, ft+1,−et+g,−ft.
Define the cellular automorphism SRn,g,T by et 7→ et+1 with ∂(Ft) 7→ ∂(Ft+1). Note that the spiral rotation
SRn,g,T is free and irreducible.

Figure 6.2.
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fn-1

Rotation reflections LRR2k,T, SRR4k,T, ZRR2k,0,T, and ZRR4k,2k,T Define the (2k, 0)-torus-
reflection-spiral to be the embedding obtained from the (2k, 0)-torus-spiral by reversing the loops f2j and
now say that Ft is the oriented face with ∂(Ft) = et, ft+1,−et, ft. Given the (2k, 0)-torus-reflection-spiral,
define the cellular automorphism LRR2k,T by et 7→ et+1 and ∂(Ft) 7→ ∂(Ft+1). Note that LRR2k,T is free
and irreducible

Define the (4k, 2k)-torus-reflection-spiral to be the embedding in Figure 6.3 and let Ft be the oriented
face with ∂(Ft) = et, ft+1,−et+2k, ft+2k. Notice the shearing indicated by the labeling of the identified edges
along the horizontal lines. We define the cellular automorphism SRR4k,T by et 7→ et+1 and ∂(Ft) 7→ ∂(Ft+1).
Note that SRR4k,T is free and irreducible.

Figure 6.3.
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Define the (2k, 0)-torus-reflection-zigzag to be the embedding shown on the left in Figure 6.4. Let Ft be
the oriented face having ∂(Ft) = et, et+1,−ft+1,−ft. We define the cellular automorphism ZRR2k,0,T by
et 7→ et+1 and ∂(Ft) 7→ ∂(Ft+1). Note that ZRR2k,0,T is free and irreducible.

Define the (4k, 2k)-torus-reflection-zigzag to be the embedding shown on the right of Figure 6.4. The
edges oriented outwards from vertex i are ei and fi and so the upper zigzag cycle is e0, e1, e2, . . . , e4k−1 and
the lower zigzag cycle is f2k, f1, f2k+2, f3, . . . , f0, f2k+1, . . . , f2k−2, f4k−1. Let Ft be the oriented face with
∂(Ft) = et, et+1,−ft+2k+1,−ft and define the cellular automorphism ZRR4k,2k,T by ∂(Ft) 7→ ∂(Ft+1). Note
that ZRR4k,2k,T is free and irreducible.
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Figure 6.4.
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Pseudofree automorphisms The first three embeddings shown in Figure 6.5 depict the cellular au-
tomorphisms P6,1:1,2:2,3:3,T, P ′6,1:1,2:2,3:3,T, and P ′′6,1:1,2:2,3:3,T, respectively. Each is described by rotating the
hexagonal rendering of the torus by 60◦. The second row of Figure 6.5 contains two different renderings of
the same embedding in the torus; the automorphism P3,3:1,T is described by rotating the hexagonal rendering
120◦. The two embeddings in the third row of Figure 6.5 depict the cellular automorphisms P4,2:1,2:2,T and
P ′4,2:1,2:2,T, respectively. Each is described by rotating the square rendering of the torus by 90◦. In the last
row of Figure Figure 6.5, the first two pictures are different renderings of the same embedding and the last
two pictures are different renderings of the same embedding. The cellular automorphism P2,4:1,T is defined
by rotating the first hexagonal rendering by 180◦ and also by rotating the first rectangular rendering by 180◦.
The cellular automorphism P ′2,4:1,T is defined by rotating the second hexagonal rendering by 180◦ and also
by rotating the second rectangular rendering by 180◦.

Figure 6.5.
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One can check the following:

• (P6,1:1,2:2,3:3,T)2  P3,3:1,T and (P ′6,1:1,2:2,3:3,T)2  P3,3:1,T by contracting one orbit of spoke edges and
deleting the other orbit of spoke edges.
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• (P ′′6,1:1,2:2,3:3,T)2  P3,3:1,T by contracting one orbit of f -edges and deleting the other orbit of f -edges.

• (P6,1:1,2:2,3:3,T)3  P2,4:1,T by contracting two orbits of spoke edges and deleting the third orbit of
spoke edges, and (P6,1:1,2:2,3:3,T)3  P ′2,4:1,T by contracting {e1, e2, e4, e5} and deleting one orbit of
spoke edges not around a.

• (P ′6,1:1,2:2,3:3,T)3  P2,4:1,T by contracting {e1, e2, e4, e5} and deleting one orbit of spoke edges, whereas

(P ′6,1:1,2:2,3:3,T)3 6 P ′2,4:1,T.

• (P ′′6,1:1,2:2,3:3,T)3  P2,4:1,T by contracting {e0, e1, e3, e4} and deleting {e2, e5}, whereas (P ′′6,1:1,2:2,3:3,T)3 6 
P ′2,4:1,T.

• (P4,2:1,2:2,T)2  P ′2,4:1,T, whereas (P4,2:1,2:2,T)2 6 P2,4:1,T, and (P ′4,2:1,2:2,T)2  P2,4:1,T, whereas

(P ′4,2:1,2:2,T)2 6 P ′2,4:1,T.

Oval rotation reflection ORR4k+2,T The cellular automorphism ORR4k+2,T for k ≥ 1 is defined
on the left-hand embedding in Figure 6.6 by reflecting across the vertical oval-cycle e0, e1, . . . , e2k and then
rotating downwards by one edge. This maps vi 7→ vi+1, fi 7→ gi+1, and gi 7→ fi+1 where addition in subscripts
is modulo 2k + 1. For k = 0, the cellular automorphism ORR2,T is defined on the right-hand embedding
in Figure 6.6 by reflecting across the vertical oval-cycle e, thus switching f and g. The automorphism
ORR4k+2,T is oval-irreducible.

Figure 6.6.
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Double-oval rotation reflection OORR4k+2,T For k ≥ 0 we define the cellular automorphism
OORR4k+2,T on the embedding in Figure 6.7 by ui 7→ ui+1, vi 7→ vi+1, ei 7→ fi+1, and fi 7→ ei+1 where
addition in subscripts is modulo 2k + 1. The cycles on u1, . . . , u2k+1 and v1, . . . , v2k+1 are the oval cycles of
OORR4k+2,T and this map is oval-irreducible.

Figure 6.7.

f1 f2 f3

e1 e2 e3

u1 u2 u3

v1 v2 v3

f
2k+1

e2k+1

u2k+1

v2k+1

6.2 Completeness of the catalogue

Theorem 6.8. If ϕ is a free cellular automorphism of G in T, then ϕ reduces to (GRn,a,b,T)i, (SRn,g,T)i,
(LRR2k,T)i, (SRR4k,T)i, (ZRR2k,0,T)i, or (ZRR4k,2k,T)i for some i.
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Proof. Note that G = G because ϕ is free. Let n = |ϕ| and let π denote the projection T → T/〈ϕ〉. Here
χ(π(T)) = 0/n = 0 and so π(T) is either the torus or Klein bottle. Let these be Cases 1 and 2, respectively.

Case 1 Since the embedding of π(G) in π(T) = T is cellular, we can contract a spanning tree and delete
loops to obtain a surface minor H of π(G) in π(T ) that consists of one vertex and two loops, say e and f ,
where, up to Dehn twists, we can say that e and f are in homology classes (1, 0) and (0, 1). Let H̃ be the
surface orbit minor of G given in Proposition 3.4 and let σ be a Zn-voltage assignment from Proposition 3.1
that recovers H̃ and ϕ|H̃ aside from the action of ϕ|H̃ on loops. Without loss of generality either |σ(e)| = n
or |σ(e)|, |σ(f)| < n. Let these be Cases 1.1 and 1.2, respectively.

Case 1.1 Because the boundary walk on the one face of H in π(T) is e, f,−e,−f , we get that Hσ ∼= H̃ is
the (n, σ(f))-torus-spiral (see Figure 6.2) where we consider σ(f) as an integer from {0, . . . , n−1}. Label the
edges as in Figure 6.2. Note that the loop e lifts to the n-cycle C and that f lifts to f0, . . . , fn−1. Now since
ϕ is free, the action of ϕ|H̃ on just the cycle C is rotation rather than reflection. Thus ϕ|H̃(ej) = ej+i for
some i relatively prime to n and so we must have that ϕ|H̃(∂(Fj)) = ∂(Fj+i) and thus ϕ|H̃ is (SRn,σ(f),T)i

for some i relatively prime to n.

Case 1.2 Let a = σ(e) and b = σ(f). By assumption Zn 6= 〈a〉 and Zn 6= 〈b〉. However, since H̃ ∼= Hσ

is connected, we must have that 〈a, b〉 = Zn and so gcd(a, b) generates Zn. Without loss of generality we
suppose a, b ∈ {1, 2, . . . , n− 1} and a > b. Now e in H lifts to n

|a| = gcd(a, n) cycles of length |a| in Hσ ∼= H̃

and so these cycles must collectively contain all n vertices of H̃; the analogous result holds for f . Thus each
C|a|-cycle and each C|b|-cycle intersect in t = |〈a〉∩〈b〉| vertices. So now since each vertex is in the intersection

of a unique pair of cycles, we get that n = t gcd(a, n) gcd(b, n). Thus Hσ ∼= H̃ is the (n, a, b)-torus-grid. Note
that a and b are both nonzero and so there are no loops and no two faces with the same boundary walk
and therefore the basic automorphism βσ completely determines ϕ|H̃ . If P is a vjvj+1-path in Hσ (recall
that vj+1 = βσ(vj)) that moves x edges along an |a|-cycle and y edges along a |b|-cycle, then βσ(P ) is the
corresponding vj+1vj+2-path which also moves x edges along an |a|-cycle and y edges along a |b|-cycle. We
see that xa + yb must be a generator for Zn and since we must have that xa + yb = i gcd(a, b) we get that
ϕ|H̃ is (GRn,a,b,T)i for some i relatively prime to n.

Case 2 Since the embedding of π(G) in π(T) = K is cellular, we can contract a spanning tree and contract
loops to obtain a surface minor H of π(G) in π(T) that consists of one vertex and two loops, say e and f .
Write Z × Z2 for the first homology group of K, so that representatives of the (1, 0) and (1, 1) classes have
Möbius neighborhoods. Up to homeomorphism we may assume without loss of generality that e is in the
(1, 0)-homology class. Then either f is in the (0, 1)-homology class or the (1, 1)-homology class; see Figure
6.9.

Figure 6.9.
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Let these be Cases 2.1 and 2.2, respectively. In either case let H̃ be the surface orbit minor of G given in
Proposition 3.4 and let σ be a Zn-voltage assignment from Proposition 3.1 that recovers H̃ and ϕ|H̃ aside
from the action of ϕ|H̃ on loops.

Case 2.1 Because ϕ is free, σ∗ is zero on facial boundary walks. Thus σ∗(e, f,−e, f) = 0 and so 2σ(f) = 0,
which gives σ(f) ∈ {0, n2 }. Since the derived embedding of Hσ is in T we have by Proposition 3.3 that |σ(e)|
is even and so n is even as well. Since Hσ ∼= H̃ is connected we have that 〈σ(e), σ(f)〉 = Zn. However since
|σ(e)| = 2k we get that kσ(e) = n

2 and so because σ(f) ∈ {0, n2 } we have that Zn = 〈σ(e), σ(f)〉 = 〈σ(e)〉.
So up to automorphism of Zn we get σ(e) = 1 and σ(f) ∈ {0, n2 }.

If σ(f) = 0, then the facial boundary walk e, f,−e, f of the single face of H in π(T) gives us that Hσ ∼= H̃
is the (n, 0)-reflection-spiral (as described in Section 6.1) where e lifts to the n-cycle C of the (n, 0)-reflection-
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spiral. Since the action of ϕ|H̃ on the cycle C is rotation rather than reflection, ϕ|H̃(ej) = ej+i for some i
relatively prime to n = 2k. Thus ϕ|H̃(∂(Fj)) = ∂(Fj+i) and so ϕ|H̃ is (LRRn,T)i for i relatively prime to n.

If σ(f) = n
2 , then consider the closed walk w = f, e, . . . , e in H containing n

2 copies of e. Note that
σ∗(w) = σ(f) + n

2σ(e) = 0 so Proposition 3.3 implies that w is an annular walk. Thus n
2 is even, giving

n = 4k and σ(f) = 2k. Since e, f,−e, f is the facial boundary walk of the single face of H in π(T) we see
that Hσ in T is the (4k, 2k)-reflection-spiral. Again we now have that ϕ|H̃(ej) = ej+i for some i relatively
prime to n = 4k and ϕ|H̃(∂(Fj)) = ∂(Fj+i), so ϕ|H̃ is (SRR4k,T)i for some i relatively prime to n = 4k.

Case 2.2 Here the facial boundary walk of the single face of H in π(T) is e, e,−f,−f . Since 0 =
σ∗(e, e,−f,−f) = 2(σ(e)− σ(f)), it follows that σ(e)− σ(f) ∈ {0, n2 }. In Case 2.2.1 we let σ(e) = σ(f) and

in Cases 2.2.2 we let σ(e)− σ(f) = n
2 . In either case, since H̃ is connected, we have that 〈σ(e), σ(f)〉 = Zn.

Case 2.2.1 Here we have up to automorphism of Zn that σ(e) = σ(f) = 1. Furthermore we must also
have that n is even because otherwise the closed walk e, . . . , e with n copies of e would be a Möbius walk,
contradicting the orientability of T by Proposition 3.3. So now the facial walk e, e,−f,−f of H in π(T) gives
us that Hσ ∼= H̃ consists of two n-cycles e0, . . . , en−1 and f0, . . . , fn−1 where both ej and fj are vjvj+1-links.
Thus Hσ ∼= H̃ is the (2k, 0)-reflection-zigzag as labeled in Figure 6.4. Since the action of ϕ|H̃ on e0, . . . , en−1

must be rotation rather than reflection, we get that ϕ|H̃(ej) = ej+i for some i relatively prime to n. Also,
ϕ|H̃(∂(Fj)) = ∂(Fj+i), so ϕ|H̃ is (ZRR2k,0,T)i for some i relatively prime to n.

Case 2.2.2 Since n
2 is in our voltage group, n is even; furthermore, we claim that n = 4k. Supposing by way

of contradiction that n = 4k+ 2, it must be that exactly one of σ(e) and σ(f) is in the subgroup 〈2〉 because

σ(e)− σ(f) = n
2 = 2k + 1 /∈ 〈2〉. Assuming that σ(e) /∈ 〈2〉, we get that |σ(e)| is even and so |σ(e)|

2 σ(e) = n
2 .

Thus σ(f) = n
2 + σ(e) = ( |σ(e)|

2 + 1)σ(e) which gives us that Zn = 〈σ(e), σ(f)〉 = 〈σ(e)〉. So up to some
automorphism of Zn, σ(e) = 1 and σ(f) = n

2 + 1. Now the closed walk f, e, . . . , e with n
2 − 1 copies of e

has σ∗(f, e, . . . , e) = σ(f) + (n2 − 1)σ(e) = 0 and is a Möbius walk because n
2 is odd. This contradicts the

orientability of T by Proposition 3.3 and hence n = 4k.
Now since σ(e)− σ(f) = n

2 = 2k we get that either σ(e), σ(f) ∈ 〈2〉 or σ(e), σ(f) /∈ 〈2〉. Since 〈2〉 6= Zn =
〈σ(e), σ(f)〉 we get that σ(e), σ(f) /∈ 〈2〉 and so |σ(e)| and |σ(f)| are both even. As in the previous paragraph

we get that ( |σ(e)|
2 + 1)σ(e) = σ(f) which yields that Zn = 〈σ(e), σ(f)〉 = 〈σ(e)〉. So up to automorphism

of Zn, σ(e) = 1 and σ(f) = n
2 + 1 = 2k + 1. So now e lifts to a 4k-cycle e0, . . . , e4k−1 and f lifts to a

4k-cycle f0, f2k+1, f2, f2k+3, . . . , f4k−2, f2k−1 where ej is a vjvj+1-link and fj is a vjv2k+1+j-link. Since the
facial boundary walk of the single face of H in π(T) is e, e,−f,−f we get that H̃ has facial boundary
walks ej , ej+1,−fj+2k+1,−fj . It follows that ϕ|H̃(ej) = ej+i for some i relatively prime to n = 4k and
ϕ|H̃(∂(Fj)) = ∂(Fj+i), so ϕ|H̃ is (ZRR4k,2k,T)i.

Theorem 6.10. If ϕ is a cellular automorphism of G = G in T that is pseudofree but not free, then ϕ
reduces to one of P2,4:1,T, P ′2,4:1,T, (P3,3:1,T)i, (P4,2:1,2:2,T)i, (P ′4,2:1,2:2,T)i, (P6,1:1,2:2,3:3,T)i, (P ′6,1:1,2:2,3:3,T)i,

and (P ′′6,1:1,2:2,3:3,T)i for some i.

Proof. Let n = |ϕ|, let π denote the projection T → T/〈ϕ〉, and let Y be the set of branch points of π(G)
in π(T). By Theorem 3.6, χ(T) = nχ(π(T))−

∑
y∈Y def(y) and so nχ(π(T)) =

∑
y∈Y def(y) ≥ 1 because ϕ

is not free. Thus χ(π(T)) ∈ {1, 2} and so π(T) is the projective plane or sphere. Let these be Cases 1 and
2, respectively.

Case 1 Here n =
∑

y∈Y def(y) and since each def(y) ≤ n− 1, we must have |Y | ≥ 2. Additionally, since each
def(y) = n− n

vy
where vy|n we get that each def(y) ≥ n− n

2 = n
2 . Thus |Y |n2 ≤

∑
y def(y) = n and so |Y | ≤ 2

which makes |Y | = 2 and each def(y) = n
2 .

By contracting a spanning tree and deleting loops, the embedding of π(G) in π(T) has one of the two
embeddings in Figure 6.11 as a surface minor, call it H. Here, we use ∗ to denote a branch point.
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Figure 6.11.
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Let H̃ be the surface orbit minor of G in T given by Proposition 3.4 and σ be a Zn-voltage assignment
from Proposition 3.1 with Hσ ∼= H̃. In the right-hand graph of Figure 6.11, since e is the facial boundary
walk surrounding a branch point of deficiency n

2 we must have that σ(e) = n
2 . The other face of the right-hand

embedding has facial boundary walk f, f, e around another branch point of deficiency n
2 . So it must be that

n
2 = σ∗(f, f, e) = 2σ(f) + n

2 and thus 2σ(f) = 0, implying σ(f) ∈ {0, n2 }. However, if σ(f) = n
2 then the

Möbius walk f, e has voltage 0, and if σ(f) = 0 then f itself is a Möbius walk of voltage 0. In either case, by
Proposition 3.3 the right-hand embedding cannot lift to the orientable surface T.

In the left-hand graph of Figure 6.11 the two facial boundaries are e, f and e,−f , so we have σ(e)+σ(f) =
σ(e) − σ(f) = n/2. This implies that 2σ(f) = 0, so either σ(f) = 0 and σ(e) = n/2 or σ(e) = 0 and
σ(f) = n/2. Thus either e or f is a Möbius walk with voltage 0 which again, by Proposition 3.3, cannot lift
to T.

Case 2 Here 2n =
∑

y∈Y def(y) and since each def(y) ≤ n−1 we must have that |Y | ≥ 3. Additionally, since
def(y) ≥ n

2 , we get that |Y |n2 ≤
∑

y def(y) = 2n and so |Y | ≤ 4. In Case 2.1 say |Y | = 3 and in Case 2.2 say
|Y | = 4.

Case 2.1 Let v1 ≤ v2 ≤ v3 be the respective orders of the three branch points. From def(y) = n − n
vy

and

2n =
∑

y∈Y def(y) we get that 1
v1

+ 1
v2

+ 1
v3

= 1. One can check that (v1, v2, v3) is either (3, 3, 3), (2, 4, 4), or
(2, 3, 6).

Since each branch point of π is in the center of a face of π(G) in π(T) (which is the sphere) we obtain a
surface minor H of π(G) consisting of a single vertex and two loops as shown in Figure 6.12 by contracting
a spanning tree and deleting loops.

Figure 6.12.
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Let H̃ be the surface orbit minor of G in T given by Proposition 3.4 and let σ be a Zn-voltage assignment
from Proposition 3.1 with Hσ ∼= H̃. If (v1, v2, v3) = (3, 3, 3) then σ(e), σ(f), σ(e) + σ(f) ∈ {n/3,−n/3} and
so σ(e) = σ(f) = ±n/3. In either case, since H̃ ∼= Hσ is connected we must have that n = 3, and one can
then check that Hσ is the defining graph for P3,3:1,T and so ϕ|H̃ is (P3,3:1,T)i for some i.

If (v1, v2, v3) = (2, 4, 4), then without loss of generality either σ(e), σ(f) ∈ {n/4,−n/4} or σ(e) = ±n/4
and σ(f) = n/2. In the former case, since σ(e) + σ(f) 6= 0, we get that σ(e) = σ(f) = ±n/4. In either case,
the connectedness of H̃ ∼= Hσ forces n = 4. When σ(e) = σ(f) = ±n/4 one can check that Hσ is the defining
graph for P4,2:1,2:2,T and thus ϕ|H̃ = (P4,2:1,2:2,T)i for some i. When one of σ(e), σ(f) equals n/2 and the
other is ±n/4 one can check that Hσ is the defining graph for P ′4,2:1,2:2,T and thus ϕ|H̃ = (P ′4,2:1,2:2,T)i for
some i.

If (v1, v2, v3) = (2, 3, 6), then without loss of generality we get one of the following possibilities: σ(e) =
±n/6 and σ(f) = n/2; σ(e) = ±n/6 and σ(f) = ±n/3; or σ(e) = ±n/3 and σ(f) = n/2. In any case, the
connectivity of H̃ ∼= Hσ implies that n = 6. In each case, Hσ is the defining graph for one of P6,1:1,2:2,3:3,T,
P ′6,1:1,2:2,3:3,T, and P ′′6,1:1,2:2,3:3,T and so ϕ|H̃ is one of (P6,1:1,2:2,3:3,T)i, (P ′6,1:1,2:2,3:3,T)i, and (P ′′6,1:1,2:2,3:3,T)i for
some i.
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Case 2.2 Since each def(y) ≥ n
2 , |Y | = 4 implies that 2n = 4 · n2 ≤

∑
y def(y) = 2n and so def(y) = n

2 for
each branch point y and also n = 2k. Because π has four branch points and π(T) is the sphere, we get that
π(G) has one of the two surface minors shown in Figure 6.13, call it H.

Figure 6.13.
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Let H̃ be the surface orbit minor of G in T given by Proposition 3.4 and σ be a Zn-voltage assignment
from Proposition 3.1 with Hσ ∼= H̃. By connectivity of H̃, we have n = 2. If H is the left-hand graph
in Figure 6.13, then the voltage on each loop must be 1. One can check that Hσ is the defining graph for
P2,4:1,T and so ϕ|H̃ is P2,4:1,T.

If H is the right-hand graph in Figure 6.13, then the voltage on the innermost and outermost loops must
be 1 and the voltage on the middle loop must then be 0. Thus Hσ is the defining graph for P ′2,4:1,T and so
ϕ|H̃ is P ′2,4:1,T.

Theorem 6.14. If ϕ is a non-pseudofree involution of G in T with G = G, then ϕ reduces to ORR2,T or
OORR2,T.

Proof. By Proposition 3.9 we have χ([π(T)]•) = r
2 +s. Since s ≥ 1 we have 2 ≥ r

2 +s ≥ 1. Thus (r, s) = (0, 1),
(0, 2), or (2, 1); these are Cases 1, 2, and 3, respectively.

Case 1 We have χ([π(T)]•) = 1 so π(T) is the Möbius band. Consider the edges of the single hole cycle in
π(G) and disregard one of them. The remaining edge set may be extended to a spanning tree T of π(G). By
contracting T and then possibly deleting some loops, we obtain a surface minor H as shown in Figure 6.15.
Since T satisfies the conditions of Proposition 3.14, we get a surface orbit minor H̃ of G corresponding to H.

Figure 6.15.
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By Proposition 3.13, there is a Z2-voltage assignment σ such that Ĥσ ∼= H̃ and ϕ|H̃ = βσ up to this
isomorphism. Since ϕ has no isolated fixed-points we have σ(h) = σ(h) + 2σ(e) = σ∗(h, e, e) = 0. So now
either σ(e) = 1 or σ(e) = 0. We cannot have σ(e) = 0, because the unfolding lift is an orientable surface.
When σ(e) = 1 we have that Hσ in ([π(T)]•)σ is the embedding in the cylinder shown in Figure 6.16 where
h0 and h1 are the hole cycles.

Figure 6.16.
e1

eh
0

h1
0

v
1

v
0

v
1

v
0

e1

It follows that the unfolding lift is the torus, where h0 = h1. Since h is an oval-cycle of ϕ|H̃ , ϕ|H̃ exchanges
the two faces of the embedding and so takes the facial walk h, e0, e1 to the facial walk h, e1, e0 and also takes
e0 to e1 and e1 to e0. Thus ϕ|H̃ is the automorphism ORR2,T as shown in Figure 6.6 where h = e, e1 = f ,
and e0 = g.

Case 2 We have χ([π(T)]•) = 2 so π(T) is the annulus. Disregard one edge in each of the two hole cycles and
extend the remaining edges to a spanning tree T of π(G) and then let C = T\e where e ∈ T is an edge not
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on either hole cycle. Now we can delete edges in π(G)/C in π(T) and then reintroduce e to obtain a surface
minor H with two vertices v1 and v2, with loops h1 and h2 covering the holes, and a link e connecting v1 and
v2. Assume the edges are oriented so that the single facial walk is h1, e, h2,−e. Since C satisfies the conditions
of Proposition 3.14, we can let H̃ be the surface orbit minor of G corresponding to H. By Proposition 3.13
there is a Z2-voltage assignment σ such that Ĥσ ∼= H̃ and ϕ|H̃ = βσ up to this isomorphism. Since ϕ has
no isolated fixed-points we have σ(h1) + σ(h2) = σ∗(h1, e, h2,−e) = 0 and thus σ(h1) = σ(h2) ∈ {0, 1}.
(Without affecting Ĥσ we may assume that σ(e) = 0.) Since Ĥσ is embedded in the orientable surface T,
σ(h1) = σ(h2) = 0. It follows that H̃ is the defining graph for OORR2,T where h1 and h2 are the oval cycles,
so ϕH̃ is OORR2,T.

Case 3 We have χ([π(T)]•) = 2 so π(T) is the disk. Let T be a spanning tree of π(G) that includes all the
edges of the single hole cycle of π(G) save one. By contracting T and deleting loops, we obtain a surface
minor H with a single vertex v, a loop h which is the hole-cycle, and an additional loop e surrounding one
of the branch points as shown on the left in Figure 6.17.

Figure 6.17.
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By Proposition 3.14, there is surface orbit minor H̃ of G corresponding to H and by Proposition 3.13 there
is a Z2-voltage assignment σ such that Hσ ∼= H̃ and ϕ|H̃ = βσ up to this isomorphism. Since each face has

a branch point, we have σ(h) + σ(e) = σ∗(h, e) = 1 and σ(e) = 1, and thus σ(h) = 0. The unfolding lift Ĥσ

is then embedded in K and not T, a contradiction; see the right in Figure 6.17.

Theorem 6.18. If ϕ is a non-pseudofree non-involutory cellular automorphism of G in T with G = G, then
ϕ reduces to (ORR4t+2,T)i or (OORR4t+2,T)i for some i.

Proof. By Proposition 2.4, we may write n = 2k = |ϕ|. By Theorem 6.14, ϕk reduces to either OORR2,T

or ORR2,T. Let these be Cases 1 and 2, respectively.
Case 1 Let π denote the projection T→ T/〈ϕk〉 and π↓ the projection [π(T)]• → [π(T)]•/〈ϕ↓〉. Let O1 and
O2 be the oval cycles of ϕ. Since ϕk  OORR2,T we get that O1 and O2 separate T into two annuli A1 and
A2. Since ϕk exchanges A1 and A2 so must ϕ, and thus k is odd.

By Proposition 3.19 ϕ↓ is pseudofree and takes capped faces to capped faces. So now since k = |ϕ↓| is
odd, Theorem 4.1 implies that ϕ↓  (Rk,S)i for some i relatively prime to k and the two fixed points of ϕ↓

are in the capped faces.
Now let P be a path connecting π↓(O1) to π↓(O2). As in the proof of Proposition 3.1, (π↓)−1(P ) consists

of k disjoint copies of P in π(G) and thus O1 and O2 taken together with (π↓)−1(P ) form a subdivision of
the embedding on the left of Figure 6.19, call it H. Note that H is a surface orbit minor of π(G) in the
sphere obtained by deletions only, and so ϕ↓|H is defined.

Figure 6.19.

We can now apply Proposition 3.14 to obtain a surface orbit minor H̃ of G corresponding to H, and by
Proposition 3.13 there is a Z2-voltage assignment σ such that Ĥσ ∼= H̃. By Proposition 3.21, there is a ∈ Z2

such that (ϕ↓|H)↑a,σ is ϕ|H̃ up to isomorphism. Now, as in the proof of Theorem 6.14 (in Case 2) σ∗ = 0 and
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so we may assume that σ ≡ 0. Since σ ≡ 0, we have that Hσ in ([π(T)]•)σ consists of two copies of H in two
disjoint spheres. So now (ϕ↓)↑0,σ has order k and (ϕ↓)↑1,σ has order 2k on Hσ and therefore we have the same

orders for (ϕ↓)↑0,σ and (ϕ↓)↑1,σ on Ĥσ ∼= H̃ in T. Thus ϕ|H̃ is (ϕ↓)↑1,σ up to this isomorphism and (ϕ↓)↑1,σ must

be (OORR4t+2,T)i for k = 2t+ 1.
Case 2 Let O be the single oval of ϕ; we get that ϕ(O) = O and so k is odd by Proposition 2.8. Let O1 and
O2 be the cycles obtained from O in G	 embedded in [T	]• = S. Since ϕ	 is pseudofree and takes O1 to O2,
Theorem 4.1 implies that ϕ	  (RR2k,S)i for some i relatively prime to 2k. Let π be the projection from S to
S/〈ϕ	〉 (which is the projective plane as in the proof of Theorem 4.1). In π(G) the cycle O′ = π(O1) = π(O2)
bounds the face containing the only branch point of π. Let T be a spanning tree of π(G) that contains all
but one of the edges of O′. By contracting T and deleting loops we obtain a surface minor as in Figure 6.20,
call it H.

Figure 6.20.
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Let σ be the Z2k-voltage assignment on H that reconstructs the surface orbit minor H̃ of G	. Since the
deficiency of the branch point is 2k − 2, we have up to automorphism of Z2k that σ(e) = 2. Now since
0 = σ∗(e, f, f) = 2 + 2σ(f) we get σ(f) + 1 ∈ {0, k} and so σ(f) ∈ {2k− 1, k− 1}; however, the connectivity
of G	 implies that 〈σ(e), σ(f)〉 = Z2k which then implies that σ(f) = 2k − 1 because k − 1 is even. Now
Hσ ∼= H̃ is the embedding as shown on the right in Figure 6.19. Since H̃ is a surface orbit minor of G	 it
corresponds to a surface orbit minor H ′ of G and the action of ϕ	|H̃  (RR2k,S)i corresponds to the action
of (ORR4t+2,T)i on H ′, where k = 2t+ 1.

7 Cellular automorphisms of the Klein bottle

7.1 A catalogue of cellular automorphisms of the Klein bottle

It is worth noting that because T double-covers K it follows that any cellular automorphism of K lifts to
a cellular automorphism of T. However, the lift of an irreducible cellular automorphism in K need not be
irreducible in T. An example of this is MRR4k+2,K, which is defined below.

Free Automorphisms LRR2k+1,K, DRR2k+1,K, MRR4k+2,K, ARR4k+2,K, and ZRR4k+2,K For
any k, define the loop rotation reflection LRR2k+1,K, diamond rotation reflection DRR2k+1,K, Möbius-
exchange rotation reflection MRR4k+2,K, annular rotation reflection ARR4k+2,K, and zigzag rotation re-
flection ZRR4k+2,K, respectively, on the embeddings in Figure 7.1 by ei 7→ ei+1 and fi 7→ fi+1. All of these
automorphisms are free and irreducible.

Figure 7.1.
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Pseudofree automorphisms P2,2:1,K, P ′2,2:1,K, P ′′2,2:1,K The first graph in Figure 7.2 depicts the
map P2,2:1,K, the second and third depict P ′2,2:1,K, and the fourth and fifth depict P ′′2,2:1,K. Each of these
is pseudofree with two fixed points, and in each case the action on each face is rotation by 180◦.

Figure 7.2.
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Oval Rotation Reflection ORR4k+2,K We define the cellular automorphism ORR4k+2,K on the first
embedding in Figure 7.3 by ot 7→ ot+1, ei 7→ di+1, and di 7→ ei+1, where subscripts are taken mod 2k + 1.
This automorphism is non-pseudofree with oval cycle o0, . . . , o2k+1. On the right we show ORR2,K.

Figure 7.3.
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Double Oval Rotation OOR2k,K and Double Oval Rotation Reflection OORR4k,K The
cellular automorphism OOR2k,K is defined on the first embedding in Figure 7.4 for any k by oi 7→ oi+1,
li 7→ li+1 (where subscripts for the li’s and the oi’s are taken mod k) and ei 7→ ei+1 (where subscripts for the
ei’s are taken mod 2k). Both o1, . . . , ok and l1, . . . , lk are ovals of (OOR2k,K)k and (OOR2k,K)k  OOR2,K.
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The cellular automorphism OORR4k,K is defined on the second embedding in Figure 7.4 for any k by
oi 7→ oi+1 (where subscripts for the oi’s are taken mod 2k) and ei 7→ ei+1 (where subscripts for the ei’s
are taken mod 4k). Both o1, o3, . . . , o2k−1 and o2, o4, . . . , o2k are ovals of OORR4k,K and (OORR4k,K)2k  
OOR2,K.

The last embedding in Figure 7.4 depicts the involution OOR2,K.
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Figure 7.4.

Oval Reflection with Rotations OR2,2:1,K The cellular automorphism OR2,2:1,K is defined on the
graph in Figure 7.5 by e0 7→ e1, e1 7→ e0 and h 7→ h. Here h is the oval cycle and there are two fixed points.

Figure 7.5.
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Proposition 7.6. If ϕ is a non-pseudofree cellular automorphism of G in K with |ϕ| = 2k ≥ 4 and G = G,
then ϕk 6 OR2,2:1,K.

Proof. Suppose that ϕk  OR2,2:1,K. Notice that ϕ	 is a pseudofree cellular automorphism of G	 in
[K	]• = S with |ϕ	| = |ϕ| ≥ 4. However now ϕ	 has four isolated pseudofixed points (two inherited from ϕ
and two in the capped faces) a contradiction of Theorem 4.1.

7.2 Completeness of the catalogue

Theorem 7.7. If ϕ is a free cellular automorphism of G in K, then ϕ reduces to one of (LRR2k+1,K)j,
(DRR2k+1,K)j, (MRR4k+2,K)j, (ARR4k+2,K)j, and (ZRR4k+2,K)j for some j.

Proof. Note that G = G because ϕ is free. Let n = |ϕ| and let π denote the projection K → K/〈ϕ〉. Here
χ(π(K)) = 0/n = 0 and so π(K) is the torus or Klein bottle. However, since a non-orientable surface cannot
be a branched cover of an orientable surface, π(K) is the Klein bottle.

Since the embedding of π(G) in π(K) is cellular, we can contract a spanning tree and delete loops to
obtain a surface minor H consisting of a vertex v and two loops, say e and f . Without loss of generality
either e is in the (1, 0)-homology class and f is in the (0, 1)-homology class or e is in the (1, 0)-homology
class and f is in the (1, 1)-homology class (see Figure 6.9). Let these be Cases 1 and 2. In both cases let
H̃ be the surface orbit minor of G corresponding to H as given in Proposition 3.4 and let σ be a voltage
assignment on H that recovers H̃ and ϕ|H̃ as given in Proposition 3.1. Also since H̃ is connected we must
have that Zn = 〈σ(e), σ(f)〉.
Case 1 Since ϕ is free and the facial walk of the single face of H in π(K) is e, f,−e, f , we get that
0 = σ∗(e, f,−e, f) = 2σ(f). Thus σ(f) = 0 when n is odd and σ(f) ∈ {0, n2 } when n is even. In Case 1.1,
say that n is odd and in Case 1.2 say that n is even.
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Case 1.1 In this case, Zn = 〈σ(e), σ(f)〉 = 〈σ(e)〉. So up to automorphism of Zn, σ(e) = 1 and σ(f) = 0.
One can show that Hσ ∼= H̃ is the defining graph for LRR2k+1,K and since ϕ|H̃(ei) = ei+j for some j we get
that ϕ|H̃ is (LRR2k+1,K)j .

Case 1.2 In this case, it actually cannot be that σ(f) = 0. If we assume that σ(f) = 0, then Zn =
〈σ(e), σ(f)〉 = 〈σ(e)〉. So up to automorphism of Zn, σ(e) = 1 and σ(f) = 0. But we also have that any
closed Möbius walk w in H has σ∗(w) = ασ(e) + βσ(f) = α where α is odd which makes σ∗(w) 6= 0.
Proposition 3.3 now implies that the derived surface given by σ is orientable, a contradiction. It thus must
be that σ(f) = n

2 . In Case 1.2.1 say that Zn = 〈σ(e)〉 and in Case 1.2.2 say that Zn 6= 〈σ(e)〉.
Case 1.2.1 Up to automorphism of Zn, σ(e) = 1 and σ(f) = n

2 . Now any closed Möbius walk w in H has
σ∗(w) = ασ(e) + βσ(f) = α + β n2 ∈ {α, α + n

2 } where α is odd. Since the derived surface is non-orientable,
Proposition 3.3 requires that σ∗(w) = 0 for some w. It cannot be that n = 4k, since then both α and α+ n

2

would be odd, hence nonzero in Zn. It follows that n = 4k + 2. One can check that Hσ ∼= H̃ is the defining
graph for MRR4k+2,K and since ϕ|H̃(ei) = ei+j for some j we get that ϕ|H̃ = (MRR4k+2,K)j .

Case 1.2.2 Since Zn 6= 〈σ(e)〉 and yet Zn = 〈σ(e), σ(f)〉, it must be that n
2 /∈ 〈σ(e)〉. These imply that

|σ(e)| is odd and also that Zn ∼= 〈σ(e)〉 × 〈n2 〉 ∼= Z2k+1 × Z2. Thus n = 4k + 2 with σ(e) = 2k + 2
up to automorphism of Zn. (Note that 〈2k + 2〉 = 〈2〉 in Z4k+2 because the order of 2k + 2 in Z4k+2 is
(4k + 2)/ gcd(4k + 2, 2k + 2) = 2k + 1.) One can check that Hσ ∼= H̃ is the defining graph for ARR4k+2,K

and since ϕ|H̃(ei) = ei+j for some j we get that ϕ|H̃ = (ARR4k+2,K)j .

Case 2 The facial boundary walk of the single face of H in π(K) is e, e,−f,−f and so 0 = σ∗(e, e,−f,−f) =
2(σ(e)−σ(f)). When n is odd this shows that σ(e)−σ(f) = 0 and when n is even it shows that σ(e)−σ(f) ∈
{0, n2 }, that is, σ(e) = σ(f) or σ(e) = σ(f) + n

2 . Let these be Cases 2.1, 2.2.1, and 2.2.2, respectively.

Case 2.1 Since σ(e) = σ(f) and 〈σ(e), σ(f)〉 = Zn, we get that σ(e) = σ(f) = 1 up to some automorphism
of Zn. On can check that Hσ ∼= H̃ is the defining graph for DRR2k+1,K and since ϕ|H̃(ei) = ei+j for some j
we get that ϕ|H̃ = (DRR2k+1,K)j .

Case 2.2.1 Since σ(e) = σ(f) and 〈σ(e), σ(f)〉 = Zn, we get that σ(e) = σ(f) = 1 up to some automorphism
of Zn. Any closed Möbius walk w in H has σ∗(w) = ασ(e) + βσ(f) where α+ β is odd because both e and
f are themselves Möbius walks. However now σ∗(w) = α + β 6= 0 because n is even. Proposition 3.3 now
implies that Hσ is orientable, a contradiction.

Case 2.2.2 We claim that n = 4k + 2. If we assume that n = 4k, then n
2 = 2k ∈ 〈2〉 6= Zn and so

either σ(e) /∈ 〈2〉 or σ(f) /∈ 〈2〉 because 〈σ(e), σ(f)〉 = Zn. So now without loss of generality suppose that
σ(e) = a /∈ 〈2〉 and σ(f) = a+ 2k. Now any closed Möbius walk w has σ∗(w) = ασ(e) + βσ(f) where α+ β
is odd. So then σ∗(w) = αa+ β(2k + a) = (α+ β)a+ β2k ∈ {(α+ β)a, (α+ β)a+ 2k}. Now by Proposition
3.3, there must be some w with σ∗(w) = 0 and σ∗(w) = 0 implies in turn that (α + β)a ∈ {0, 2k}; however
{0, 2k} ⊆ 〈2〉 and since a /∈ 〈2〉 no odd multiple of a is in 〈2〉, a contradiction.

Since n = 4k + 2, it must be that exactly one of σ(e) and σ(f) is in the subgroup 〈2〉 of Z4k+2 because
the subgroup 〈2〉 has index 2 and σ(e)− σ(f) = n

2 = 2k+ 1 /∈ 〈2〉. We can assume without loss of generality
that σ(f) /∈ 〈2〉 because there is a homeomorphism of the Klein bottle that exchanges the (1, 0)- and (1, 1)-

homology classes. So now we get that |σ(f)| is even and so |σ(f)|
2 σ(f) = n

2 and so σ(e) = σ(f) + n
2 =(

|σ(f)|
2 + 1

)
σ(f) which makes 〈σ(f)〉 = Zn. Now, up to some automorphism of Zn we have σ(f) = 1 and so

σ(e) = σ(f) + n
2 = 2k + 2. One can now check that Hσ ∼= H̃ is the defining graph for ZRR4k+2,K and since

ϕ|H̃(fi) = fi+j for some j we get that ϕ|H̃ = (ZRR4k+2,K)j .

Theorem 7.8. If ϕ is cellular automorphism of G = G in K that is pseudofree but not free, then ϕ reduces
to P2,2:1,K, P ′2,2:1,K, or P ′′2,2:1,K.

Proof. Let n = |ϕ|, let π denote the projection K → K/〈ϕ〉, and let Y be the set of branch points of π(G)
in π(K). By Theorem 3.6, χ(K) = nχ(π(K))−

∑
y∈Y def(y) and so nχ(π(K)) =

∑
y∈Y def(y) ≥ 1 because ϕ

is not free. Thus χ(π(K)) ∈ {1, 2} but since the Klein bottle cannot be a branched covering of the sphere,
χ(π(K)) = 1 which makes π(K) the projective plane.
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As explained in Case 1 of the proof of Theorem 6.10, |Y | = 2 and each y ∈ Y has deficiency n
2 . So, as

before we contract a spanning tree and delete loops to get a surface minor H of π(G) in π(K) with branch
points positioned as shown in Figure 6.11. Let σ be a Zn-voltage assignment that recovers H̃ in K. In the
left-hand graph of the figure the possible voltage assignment, up to symmetry, is σ(f) = 0 and σ(e) = n

2 .
Since H is connected, we have 〈σ(e)〉 = Zn and thus n = 2. It follows that ϕH̃ is P2,2:1,K. In the right-hand
graph of Figure 6.11 we have σ(e) = n

2 and either σ(f) = 0 or σ(f) = n
2 . Again, since H is connected we

must have n = 2. In the case that σ(e) = n
2 and σ(f) = 0 we have that ϕH̃ is P ′2,2:1,K, and in the case that

σ(e) = n
2 and σ(f) = n

2 we have that ϕH̃ is P ′′2,2:1,K.

Theorem 7.9. If ϕ is a non-pseudofree involutory cellular automorphism of G in K with G = G, then ϕ
reduces to ORR2,K, OOR2,K, or OR2,2:1,K.

Proof. As in the proof of Theorem 6.14 we get that (r, s) ∈ {(0, 1), (0, 2), (2, 1)}. Let π be the projection
from K to K/〈ϕ〉.

If (r, s) = (0, 1), then as in Case 1 of the proof of Theorem 6.14, π(K) is the Möbius band. Choose a
spanning tree T of π(G) in π(K) that contains all but one edge of the hole-cycle. After contracting T and
deleting loops we can get a surface minor H consisting of two loops e and h where h is the hole cycle (see
Figure 6.15). The way that H is obtained satisfies the hypothesis of Proposition 3.14 and so we have the
corresponding surface orbit minor H̃ of G in K and Proposition 3.13 yields a Z2-voltage assignment σ on H
for which Ĥσ in K is H̃ in K. As shown in Case 1 of the proof of Theorem 6.14, the only possible voltage
assignment is then given by σ(h) = 0 and σ(e) = 0. Thus the oval cycle h of H̃ in K separates K and is
noncontractible, so separates K into two Möbius bands. We get that the corresponding involution ϕ|H̃ is
ORR2,K.

If (r, s) = (0, 2), then as in Case 2 of the proof of Theorem 6.14, π(K) is the annulus and there is a surface
minor H in π(G) consisting of two loops h1 and h2 (which are the hole cycles) along with a link e connecting
the endpoints of these loops. The construction of the surface minor H satisfies the conditions of Proposition
3.14, so we have a Z2-voltage assignment σ on H for which Ĥσ in K is H̃ in K. From the argument in Case
2 of the proof of Theorem 6.14, σ must have σ(h1) = σ(h2) = 1. So now the lifts of h1 and h2 in K have
Möbius neighborhoods and so, without loss of generality, h1 is in homology class (1, 0) and h2 is in homology
class (1, 1) and we get that ϕ|H̃ is the involution OOR2,K (see Figure 7.4).

If (r, s) = (2, 1), then as in Case 3 of the proof of Theorem 6.14, π(K) is the disk and π(G) has a surface
minor H with a single vertex v, a loop h which is the hole-cycle, and an additional loop e surrounding one of
the fixed points, as shown on the left of 6.17; furthermore, H is obtained in a way that satisfies the conditions
of Proposition 3.14. As mentioned in Case 3 of the proof of Theorem 6.14, we must have that σ(h) = 0 and
σ(e) = 1. The embedding shown in Figure 7.5 has the correct facial walks corresponding to the facial walks
in H and so ϕ|H̃ is OR2,2:1,K.

Theorem 7.10. If ϕ is a non-pseudofree non-involutory cellular automorphism of G in K with G = G, then
ϕ reduces to one of (ORR4k+2,K)j, (OOR2k,K)j, and (OORR4k,K)j for some j.

Proof. By Proposition 2.4, |ϕ| = 2m, and by assumption 2m ≥ 4. By Theorem 7.9 and Proposition 7.6, ϕm

reduces to ORR2,K (Case 1) or OOR2,K (Case 2). In each case let π be the projection K → K/〈ϕm〉 and
π↓ the projection [π(K)]• → [π(K)]•/〈ϕ↓〉.
Case 1 Let O be the oval-cycle of ϕ; note that O has an annular neighborhood. Here π(K) is the Möbius
band with hole cycle π(O) = O. We also have (by Theorem 5.1) that π↓π(K) is the Möbius band with hole
cycle π↓(O). Let C be the edge-set of π↓(O) with one edge excluded and extend C to a spanning tree T of
π↓π(G). After contracting T and possibly deleting some edge-set D we obtain a surface minor H of π↓π(G)
with a loop as the hole cycle as in Figure 6.15. By Proposition 3.4, H in π↓π(K) corresponds to a surface
orbit minor H ′ = π(G)/(π↓)−1(C)\(π↓)−1(D) in π(K) with respect to ϕ↓.

Since ϕ↓ is pseudofree, (π↓)−1(T ) is a forest in π(G) consisting of isomorphic copies of T (as in the proof of
Proposition 3.1). Given the way that T and D were chosen, (π↓)−1(T ) and (π↓)−1(D) satisfy the conditions
of Proposition 3.14. Thus H ′ corresponds to a surface orbit minor H̃ of G with respect to ϕ.

34



By Theorem 5.1(1) m = |ϕ↓| is odd because ϕ↓ is pseudofree. Write m = 2k+1. By Proposition 3.1 there
is a Zm-voltage assignment σ on H that reconstructs ϕ↓|H′ . Using the labels in Figure 6.15 and the fact that
the branch point in [π↓π(K)]• has deficiency m− 1, we get that σ(h) = 1 up to some automorphism of Zm.
Moreover, since 2σ(e) + σ(h) = 0 we get that σ(e) = (m − 1)/2 = k. Thus H ′ is as in Figure 7.11 and ϕ↓

takes vertex i to vertex i+ t for some fixed t relatively prime to m = 2k + 1.

Figure 7.11.

1 2 3 k+1

1k+2 k+3 2k+1

By Proposition 3.13 there is a Z2-voltage assignment σ′ on H ′ that reconstructs H̃. As in the proof of
Theorem 7.9, σ′ ≡ 0. By Proposition 3.21 there is a ∈ Z2 such that (ϕ↓)↑a,σ′ is ϕ|H̃ . By Proposition 3.17
and the fact that m = 2k + 1 is odd, exactly one a in Z2 gives the correct order for ϕ|H̃ . Thus ϕ|H̃ must be
(ORR4k+2,K)j for some j ∈ {t, t+m}.
Case 2 Let O1 and O2 be the oval-cycles of ϕ; note that both have a Möbius neighborhood. Here π(K) is
the annulus with hole cycles O1 and O2. In Case 2.1 say ϕ(O1) = O1 and in Case 2.1 say ϕ(O1) = O2.
Case 2.1 Since ϕ(O1) = O1 (and also ϕ↓(O1) = O1), Theorem 4.1 and Proposition 3.19 imply that ϕ↓  
(Rk,S)j . Now let γ be a path connecting π↓(O1) to π↓(O2). As in the proof of Theorem 3.1, (π↓)−1(γ) is a
disjoint union of k copies of γ whose union with O1 and O2, call it H, is a subdivision of the left embedding
in Figure 6.19. Note that H is a surface orbit minor of π(G) obtained by deletions only, and thus we can
apply Proposition 3.14 to obtain a surface orbit minor H̃ of G corresponding to H. By Proposition 3.13
there is a Z2-voltage assignment σ on H that has Ĥσ ∼= H̃ and by Proposition 3.21 there is a ∈ Z2 such that
(ϕ↓)↑a,σ is ϕ|H̃ . Since both O1 and O2 have Möbius neighborhoods we have that σ∗(O1) = σ∗(O2) = 1 and

each facial boundary has total voltage 0. Thus Ĥσ ∼= H̃ is a subdivision of the defining graph for OOR2k,K

and so ϕ|H̃ reduces to (OOR2k,K)j .
Case 2.2 Since ϕ↓(O1) = O2, |ϕ↓| = m must be even, say m = 2k. Since O1 and O2 have Möbius
neighborhoods they do not separate K, and so we apply the cutting construction to get [K	]• = S. Let O′1
and O′2 be the corresponding hole cycles of G	 in K	. Since O′1 and O′2 each enclose a pseudofixed point of
index 2, Theorem 4.1 now implies that ϕ	  (RR4k,S)j . Let π	 be the projection K	 → K	/〈ϕ	〉. Here
π	([K	]•) is P. As in Case 2 of the proof of Theorem 6.18, we obtain a surface orbit minor of G	 that is
a subdivision of the embedding shown on the right in Figure 6.19 where O′1 and O′2 are the inner and outer
cycles. If we identify antipodal points on each O′i, then we obtain a subdivision of the defining graph for
OORR4k,K and this is a surface orbit minor of G with respect to ϕ. The action of ϕ on this surface orbit
minor is thus given by ϕ	  (RR4k,S)j and so must correspond to (OORR4k,K)j .

8 Cellular automorphisms of Dyck’s surface

The cellular automorphisms of Dyck’s surface D are much different from the previous four surfaces in that
the only possible orders are 2, 3, and 4 and none of the cellular automorphisms are free. We consider three
“standard renderings” of D. The three-crosscaps rendering is given by the hexagons in Figure 8.1. We depict
the torus with a crosscap and the Klein bottle with a crosscap by the usual renderings of each along with a
face removed and its boundary edges identified to form a crosscap; see Figures 8.3-8.5 where the deleted face
is shown shaded. For each cellular automorphism we provide a depiction in one of the standard renderings.

8.1 A catalogue of cellular automorphisms of Dyck’s surface

The cellular automorphisms P3,2:1,D, P ′3,2:1,D, and P ′′3,2:1,D are defined, respectively, on the embeddings in
Figure 8.1 by ei 7→ ei+1 with two isolated fixed points as indicated. Each is pseudofree.
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Figure 8.1.
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The cellular automorphism O2,1:1,D is defined on the first embedding in Figure 8.2 by rotating the single face
180◦; it can also be visualized as in the second embedding by reflecting across a. The cellular automorphism
O′2,1:1,D is defined on the third embedding in Figure 8.2 by rotating the single face 180◦; it can also be
visualized as in the fourth embedding by reflecting across a. Each cellular automorphism has oval cycle a,
which has a Möbius neighborhood, and one isolated fixed point.

Figure 8.2.
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The cellular automorphism O2,3:1,D is defined on either of the first two embeddings in Figure 8.3 by rotating
the figure by 180◦. Similarly, the cellular automorphism O′2,3:1,D is defined on either of last two embeddings
in Figure 8.3. Each has oval cycle a (which has a Möbius neighborhood) and three isolated fixed points.

Figure 8.3.
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The cellular automorphismO4,1:1,2:2,D is defined on either of the first two embeddings in Figure 8.4 by rotating
the figure 90◦. Similarly, the cellular automorphism O′4,1:1,2:2,D is defined on either of the last two embeddings
in Figure 8.4. Each has oval cycle ab of length 2 (which has a Möbius neighborhood), one fixed point, and
two pseudofixed points of index 2. One can check that (O4,1:1,2:2,D)2  O2,3:1,D and (O′4,1:1,2:2,D)2  O′2,3:1,D.

Figure 8.4.
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The cellular automorphism OO2,1:1,D is defined on either of the embeddings in Figure 8.5 by rotating the
single face 180◦. It has oval cycles a and b and one isolated fixed point. The oval cycle a has a Möbius
neighbohood and the oval cycle b has an annular neighborhood.
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Figure 8.5.
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8.2 Completeness of the catalogue

Theorem 8.6. If ϕ is a cellular automorphism of G in D and G = G, then ϕ reduces to one of (P3,2:1,D)i,
(P ′3,2:1,D)i, (P ′′3,2:1,D)i, O2,1:1,D, O′2,1:1,D, O2,3:1,D, O′2,3:1,D, (O4,1:1,2:2,D)i, (O′4,1:1,2:2,D)i, and OO2,1:1,D.

The following Proposition follows from fact that in a closed surface the sum of the voltages on all faces
must be 0. It will be used in the proof of Theorem 8.6.

Proposition 8.7. If G is embedded in closed surface S and σ is a Z2-voltage assignment on G, then the
number of faces whose boundary walks are nonzero under σ∗ is even.

Proof of Theorem 8.6. Let n = |ϕ| and π : D→ D/〈ϕ〉 be the corresponding projection. In Case 1 say that
ϕ is pseudofree and in Case 2 say that ϕ is not pseudofree.

Case 1 Let Y be the set of branch points of π. Applying Theorem 3.6 we get that

χ(D/〈ϕ〉) =
−1

n
+

1

n

∑
y∈Y

def(y) (2)

and so (because χ(D/〈ϕ〉) is an integer) we get that ϕ is not free which then makes χ(D/〈ϕ〉) ≥ 0. Since
D is non-orientable, we cannot have that χ(D/〈ϕ〉) = 2 and so in Case 1.1 we assume χ(D/〈ϕ〉) = 0 and in
Case 1.2 we assume χ(D/〈ϕ〉) = 1.

Case 1.1 Since χ(D/〈ϕ〉) = 0, Equation (2) yields 1 =
∑

y∈Y def(y) and so |Y | = 1 with the single branch
point y having order n

n−1 , which is an integer. Thus n = 2 and y is the image of a fixed point. By Proposition
3.1 there is a Z2-voltage assignment σ on G/〈ϕ〉 in D/〈ϕ〉 that recovers ϕ on G in D and (because |Y | = 1)
σ∗ is nonzero on the boundary walk of exactly one face. This contradicts Proposition 8.7.

Case 1.2 Since χ(D/〈ϕ〉) = 1, Equation (2) implies that

n+ 1 =
∑
y∈Y

def(y) ≤ (n− 1)|Y | (3)

and so |Y | ≥ 2. Applying Theorem 3.7 we have

−1

n
= 1−

∑
y∈Y

(
1− 1

vy

)
≤ 1− |Y |

2

and so |Y | ≤ 2 + 2
n . Hence either |Y | = 3 with n = 2 or |Y | = 2. Let these be, respectively, Cases 1.2.1 and

1.2.2.

Case 1.2.1 Because n = 2 and |Y | is odd, we contradict Proposition 8.7 in the same way as in Case 1.1.

Case 1.2.2 Using |Y | = 2 in (3) we get that n+ 1 ≤ 2n− 2 and so n ≥ 3. We claim that at least one of the
branch points of π has order greater than 2. Assume to the contrary that both branch points have order 2.
Let σ be a Zn-voltage assignment on G/〈ϕ〉 in D/〈ϕ〉 = P that recovers G in D and ϕ. We can rechoose σ
(without changing σ∗) so that σ(e) = 0 for edges on some spanning tree T of G/〈ϕ〉 and, since both branch
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points have order 2, σ(e) ∈ {0, n2 } for edges off of T . However, since n ≥ 3, this contradicts the fact that
G ∼= (G/〈ϕ〉)σ is connected.

So now write Y = {y1, y2} and again apply Theorem 3.7 to get

−1

n
= 1−

∑
y∈Y

(
1− 1

vy

)
= −1 +

1

vy1
+

1

vy2
≤ −1 +

1

2
+

1

3
= −1

6

and so 3 ≤ n ≤ 6. Now since each vyi divides n, the only possibilities are n = 3 with vy1 = vy2 = 3, n = 4 with
vy1 = 2 and vy2 = 4, and n = 6 with vy1 = 2 and vy2 = 3. Let these be, respectively, Cases 1.2.2.1–1.2.2.3.

In each of the three cases, G/〈ϕ〉 embedded in D/〈ϕ〉 = P contains a surface minor H as in Figure 6.11
with the two branch points as indicated. Now let H̃ be the surface orbit minor of G in D given in Proposition
3.4 and σ be a Zn-voltage assignment on H that recovers H̃ and ϕ|H̃ .

Case 1.2.2.1 If H is the left embedding in Figure 6.11, then up to symmetry and automorphism of Z3, we
may assume that σ(e) = 1. Now the only way in which vy1 = vy2 = 3 is possible is if σ(f) = 0. One can
check that Hσ ∼= H̃ is the third embedding in Figure 8.1 and so ϕ|H̃ is either P ′′3,2:1,D or (P ′′3,2:1,D)2.

If H is the right embedding in Figure 6.11, then up to automorphism of Z3 we may assume that σ(e) = 1.
Now we need that σ∗(e, f, f) = 2σ(f) + 1 ∈ {1, 2} and so σ(f) = {0, 2}. If σ(f) = 0, then one can check that
Hσ ∼= H̃ is the first embedding in Figure 8.1 and so ϕ|H̃ is either P3,2:1,D or (P3,2:1,D)2. If σ(f) = 2, then one

can check that Hσ ∼= H̃ is the second embedding in Figure 8.1 and so ϕ|H̃ is either P ′3,2:1,D or (P ′3,2:1,D)2.

Case 1.2.2.2 The branch point of order 2 has facial boundary walk with total voltage 2 ∈ Z4 and the branch
point of order 4 has facial boundary walk with total voltage 1 or 3 in Z4. Thus, if N is a noncontractible cycle
in G/〈ϕ〉 in D/〈ϕ〉, then we have orientations of the faces of the embedding so that 2σ∗(N) =

∑
i σ∗(θiFi) ∈

{1 + 2, 3 + 2}, but this is impossible in Z4.

Case 1.2.2.3 Similar to the previous case, if N is a noncontractible cycle in G/〈ϕ〉 in D/〈ϕ〉, then we have
orientations of the faces of the embedding so that 2σ∗(N) =

∑
i σ∗(θiFi) ∈ {3+2, 3+4}, but this is impossible

in Z6.

Case 2 In Case 2.1 assume that n = 2 and in Case 2.2 assume that n ≥ 4.

Case 2.1 Applying Proposition 3.9 with s ≥ 1 we get that

χ([D/〈ϕ〉]•) =
−1

2
+
r

2
+ s ∈ Z

which implies that r ≥ 1 and so χ([D/〈ϕ〉]•) ∈ {1, 2}. In Case 2.1.1 say that χ([D/〈ϕ〉]•) = 1 and in Case
2.1.2 say that χ([D/〈ϕ〉]•) = 2.

Case 2.1.1 Here we must have s = 1 and r = 1 and D/〈ϕ〉 is a Möbius band. Now G/〈ϕ〉 in D/〈ϕ〉 contains
a surface minor H properly embedded as shown in Figure 8.8 where e is the hole cycle.

Figure 8.8.
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Let H̃ be the surface orbit minor of G in D given by 3.14 and let σ be a Z2-voltage assignment on H that
recovers H̃ and ϕ|H̃ given by Proposition 3.13. We must have that 1 = σ∗(e, f, f) = σ(e) + 2σ(f) = σ(e). If
σ(f) = 0, then one can check that the ordinary derived embedding Hσ and basic automorphism βσ together
are P ′2,2:1,K (see Figure 7.2). So then Ĥσ ∼= H̃ and ϕ|H̃ is O2,1:1,D. If σ(f) = 1, then one can check that the

ordinary derived embedding Hσ and basic automorphism βσ together are P ′′2,2:1,K. So then Ĥσ ∼= H̃ and ϕ|H̃
is O′2,1:1,D.

Case 2.1.2 Here we either have s = 2 and r = 1 or s = 1 and r = 3. Let these be Cases 2.1.2.1 and 2.1.2.2,
respectively.

Case 2.1.2.1 Here D/〈ϕ〉 is an annulus. Thus G/〈ϕ〉 in D/〈ϕ〉 contains a surface minor H that is properly
embedded as shown on the left in Figure 8.9 with hole-cycles a and b and isolated branch point as indicated.
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Figure 8.9.
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Let H̃ be the surface orbit minor of G in D given by Proposition 3.14 and let σ be a Z2-voltage assignment
on H that recovers H̃ and ϕ|H̃ as in Proposition 3.13. We must have that 1 = σ∗(a, e, b,−e) = σ(a) + σ(b).
By symmetry we may assume that σ(a) = 1 and σ(b) = 0. Given that e is not contained in any cycle, we can
choose σ(e) = 0 without affecting σ∗. One can check that the ordinary derived embedding Hσ (in S) is as
shown on the right in Figure 8.9 and the associated basic automorphism reduces to R2,S. So now Ĥσ ∼= H̃
and ϕ|H̃ is OO2,1:1,D as shown in Figure 8.5.

Case 2.1.2.2 Here D/〈ϕ〉 is a disk. Thus G/〈ϕ〉 in D/〈ϕ〉 contains one of the proper embeddings in Figure
8.10 as a surface minor, call it H. In each embedding a is the hole-cycle. Let H̃ be the surface orbit minor
of G in D given by Proposition 3.14 and let σ be a Z2-voltage assignment on H that recovers H̃ and ϕ|H̃ as
in Proposition 3.13.

Figure 8.10.

*

a**

*

a

*

*
b c b

c

If H is the left embedding from Figure 8.10, we must have that σ(b) = σ(c) = σ(a) = 1. One can check
that, after relabeling, the ordinary derived embedding of Hσ and the associated basic automorphism together
are P2,4:1,T (see Figure 6.5). So now Ĥσ ∼= H̃ in D and ϕ|H̃ is O2,3:1,D.

If H is the right embedding from Figure 8.10, we must have that σ(a) = σ(c) = 1 and σ(b) = 0. One can
check that, after relabeling, the ordinary derived embedding of Hσ and the associated basic automorphism
together are P ′2,4:1,T (see Figure 6.5). So now Ĥσ ∼= H̃ in D and ϕ|H̃ is O′2,3:1,D.

Case 2.2 Here n = 2k and so by Case 2.1 ϕk reduces to one of O2,1:1,D, O′2,1:1,D, O2,3:1,D, O′2,3:1,D, and
OO2,1:1,D.

If ϕk  O2,1:1,D, then (ϕ	)k  P ′2,2:1,K. By Theorem 7.8 we get that k = 1.

If ϕk  O′2,1:1,D, then (ϕ	)k  P ′′2,2:1,K. By Theorem 7.8 we again get that k = 1.

If ϕk  OO2,1:1,D, let A be the annular oval cycle and let M be the Möbius oval cycle. We must have
ϕ(A) = A and ϕ(M) = M . After cutting, A gives rise to two hole cycles A1 and A2 and M gives rise to one
hole cycle M1, and ϕ	 exchanges A1 and A2 and fixes M1. If k > 1 then ϕ	 must have 4 pseudofixed points,
however [D	]• = S, yielding a contradiction to Theorem 4.1. Thus k = 1.

If ϕk  O2,3:1,D, then the single oval has a Möbius neighborhood and one can check that (ϕ	)k  P2,4:1,T.
By Theorem 6.10 we get that k ∈ {1, 2}. Assuming that k = 2, Theorem 6.10 also implies that fix(ϕ) consists
of an isolated pseudofixed point of index 1 and two isolated pseudofixed points of index two. Let G be the
embedded graph for ϕ and O be the oval-cycle. By Proposition 3.9 we know that G/〈ϕ2〉 is embedded in
[D/〈ϕ2〉]• = S with induced cellular automorphism ϕ↓ which has ϕ↓(O) = O and maps the capped face to the
capped face. Thus ϕ↓  R2,S by Theorem 4.1. Now we must have that G/〈ϕ2〉 in D/〈ϕ2〉 has surface orbit
minor H (with respect to ϕ↓) equal to one of the embeddings in Figure 8.11 where a, b is the hole-cycle, the
larger asterisk is a fixed point of ϕ↓, and the smaller asterisks are the images of the two index-2 pseudofixed
points of ϕ.
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Figure 8.11.
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The surface orbit minor H can be obtained in a way that satisfies the conditions of Proposition 3.14 because
after deletion of edges we would only have to contract orbits of edges along the hole-cycle and along paths
that are subdivisions of c and d or e and f . So now let H̃ be the surface orbit minor of G in D given by
Proposition 3.14 that corresponds to H and let σ be a Z2-voltage assignment on H given by Proposition 3.13
that reconstructs H̃ and ϕ2; Proposition 3.21 ensures that ϕ|H̃ is one of the lifted automorphisms (ϕ↓)↑0,σ or

(ϕ↓)↑1,σ. Now, without loss of generality, we have that σ(a) = 0 and σ(b) = 1 because the single oval of ϕ has
a Möbius neighborhood. Since the faces containing branch points must have total voltage 1 along their facial
boundary walks we then get that σ(c) = σ(d) = 1 for the first embedding of Figure 8.11 and that σ(e) = 1
and σ(f) = 0 for the second embedding. One can now construct the lifted embeddings and automorphisms
and get that ϕ|H̃ is one of O4,1:1,2:2,D, O′4,1:1,2:2,D, (O4,1:1,2:2,D)3, and (O′4,1:1,2:2,D)3.

9 Self-dual embeddings

Consider a graph G embedded in S and its topological dual embedding G∗ in S. If there is a cellular
isomorphism ϕ from G in S to G∗ in S, then we say that the embedding of G in S is self dual. In this section
we will give procedures for constructing all self-dual embeddings in the sphere, projective plane, torus,
Klein bottle, and Dyck’s surface using our complete catalogs of all irreducible and oval-irreducible cellular
automorphisms for those surfaces. In fact, the procedures that we give will work for any given closed surface
S for which a complete catalog of all irreducible pseudofree and oval-irreducible cellular automorphisms in
S is known.

The techniques we utilize are inspired by those in [7, 8]; indeed our original motivation for this paper was
to extend the techniques in [7, 8] to the torus and Klein bottle.

9.1 Radial graphs, cellular automorphisms, and self duality

In [7, 8] self-dual embeddings are related to cellular automorphisms via the observations which we now survey.
Given a graph G embedded in a closed surface S, the radial graph R(G) is a bipartite graph whose vertex
set has partite sets V (G) and F (G) with edges given by the vertex/face incidences of the embedding of G.
That is, given an f ∈ F (G), f is an open n-gon in the embedding of G and the corresponding vertex in
R(G) has edges “radiating” out to the corners of this n-gon (see the left of Figure 9.1). As such, the natural
embedding of R(G) in S has every face bounded by a walk of length four and in each such face the diagonals
correspond to an edge/dual-edge pair of G and G∗. (In Figure 9.1 on the right we have a graph embedded in
the projective plane with bold edges and its corresponding radial graph embedding shown in dashed edges.)

Figure 9.1.

Thus R(G∗) = R(G) and if ϕ is a cellular isomorphism of G in S to G∗ in S, then ϕ corresponds to a cellular
automorphism of R(G) in S that exchanges the partite sets. Conversely, if ϕ is a cellular automorphism of a
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bipartite graph Q embedded in S for which every face has length four and ϕ exchanges the partite sets of Q,
then ϕ naturally corresponds to a cellular isomorphism of a graph of G in S to G∗ in S with R(G) = Q. Thus
we have Proposition 9.2. Here a quadrangulation of S is a graph embedding in which all facial boundaries
are of length 4; it does not require any intersection conditions on pairs of boundaries.

Proposition 9.2. Given a closed surface S, the pairs ({G,G∗}, ϕ) where ϕ is a cellular isomorphism from G
to G∗ in S are in bijective correspondence with pairs (Q,ϕ) where ϕ is a part-reversing cellular automorphism
of bipartite quadrangulation Q of S.

Our procedures for constructing self-dual embeddings are actually procedures for constructing part-reversing
cellular automorphisms on bipartite quadrangulations. They are Constructions 9.14, 9.19, and 9.32.

There has been extensive previous work on characterizing quadrangulations of the sphere, projective
plane, torus, and Klein bottle (without explicit descriptions of symmetries and pseudofixed points as is
done in this paper) by Altshuler [1] and Nakamoto [24, 25, 26, 27]. Altshuler characterizes the 4-regular
quadrangulations of the torus; our torus grids of Section 6.1 are very closely related. Nakamoto requires that
the embedded graph of the quadrangulation be simple and defines a type of reduction of quadrangulations
with respect to which he identifies the minimal quadrangulations. All quadrangulations are then generated
by certain expansion operations from the minimal ones. Here we do not require that the embedded graphs
be simple and we employ different methods of reduction and construction; in particular, our methods respect
the cellular automorphisms of the embedding.

9.2 Basic properties of part-reversing cellular automorphisms on bipar-
tite quadrangulations

Proposition 9.3. Let ϕ be a part-reversing cellular automorphism (not necessarily pseudofree) of a bipartite
quadrangulation Q in surface S and let x be an isolated pseudofixed point of ϕ of index m.

(1) If m is odd, then either

• x is in the center of a face, the action of ϕm on that face is a 1/4-rotation, and |ϕ| = 4m or

• x is in the center of a link, the action of ϕm on that edge is a reflection, and |ϕ| = 2m.

(2) If m is even, then either

• x is in the center of a face, the action of ϕm on that face is a 1/2-rotation, and |ϕ| = 2m or

• x is at a vertex, the action of ϕm on the neighborhood of that vertex is a rotation of order r, and
|ϕ| = mr.

Proof. If m is odd, then ϕm is part reversing and so any x of index m must be in the center of a face or link.
In the former case, the part-reversing property of ϕm implies that the action of ϕm at x is a 1/4-rotation.
In the latter case, the action of ϕm on a small neighborhood of x is a 1/2-rotation. If m is even, then ϕm

is part preserving and so x cannot be in the center of a link but may be in the center of a loop, however Q,
being bipartite, is loopless. Thus x is either in the center of a face or at a vertex. The remaining assertions
follow.

Notice that for any isolated x ∈ fix(ϕ) the points in orbitϕ(x) all fall into the same category from
Proposition 9.3. Also, the category from Proposition 9.3 that the points fall into is uniquely determined by
|ϕ|/m and the parity of m except in the case where m is even and |ϕ|/m = 2.

Another interesting fact that arises from Proposition 9.3 concerns pseudofixed points of odd index. In
such cases, the possible orders of these cellular automorphisms are severely restricted. For example, in the
projective plane, all cellular automorphisms have an isolated pseudofixed point of index 1. So although for
any n there is a general cellular automorphism of order n, part-reversing cellular automorphisms on bipartite
quadrangulations in the projective plane may have order 2 or 4 only (as shown in [7]).
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Proposition 9.4. Let ϕ be a part-reversing cellular automorphism of a bipartite quadrangulation Q in surface
S with an oval O in fix(ϕ).

(1) If |ϕ|/2 is odd, then O intersects Q only at midpoints of links. (See the top of Figure 9.5.) Furthermore,

• if O has an annular neighborhood, then O intersects an even number of faces and

• if O has a Möbius neighborhood, then O intersects an odd number of faces.

(2) If |ϕ|/2 is even, then O intersects Q only at vertices and entire edges. (See the bottom of Figure 9.5.)

Figure 9.5.

O

O

The graph along the oval in the top of Figure 9.5 is called a ladder and this ladder is either annular or
Möbius . The graph along the oval in the bottom of Figure 9.5 we will call a necklace.

Proof of Proposition 9.4. Say that |ϕ| = 2k. If k is odd, then ϕk is part reversing on Q and so O must
intersect Q as stated. The final two items are implied by the bipartite condition. If k is even, then ϕk is part
preserving on Q and so O must intersect Q as stated.

Since the length of an oval cycle is important for the ladder neighborhoods of ovals in Proposition 9.4,
we present Proposition 9.6.

Proposition 9.6. Let ϕ be an oval-irreducible cellular automorphism of G in S and let O be an oval-cycle
in G.

(1) If O has an annular neighborhood, then the length of O is odd.

(2) If |ϕ|/2 is odd and O has a Möbius neighborhood, then the length of O is odd.

Proof. By Propositions 2.8 and 5.2, |ϕ| = 2rm where m is the index of O and r is the order of the rotation
action of ϕm on O. Thus the length of O is rt for some t. We claim that t = 1. If t > 1, then pick any
edge e in O and note that orbitϕ(e) is a collection of edges in the oval-cycles of orbitϕ(O) that are pairwise
non-incident. Thus G/orbitϕ(e) satisfies the conditions for a surface orbit minor in S, however, this surface
orbit minor is obtained without any deletions and so contradicts the oval-irreducibility of G in S.

In the case that O has an annular neighborhood, Proposition 2.8 implies that r (which is the length of
O) is odd. In the case that O has a Möbius neighborhood, the assumption that |ϕ|/2 = rm is odd implies
that r is odd.

Proposition 9.7 is an important property that is used without further mention.

Proposition 9.7. Suppose G is a connected bipartite graph and {A,B} is the unique bipartition of its
vertices. Any automorphism ϕ of G induces a unique bijection on {A,B} and this bijection can be determined
by checking the parity of the length of a single vϕ(v)-path for any vertex v. Furthermore, all vϕ(v)-paths for
all vertices v have the same parity.
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9.3 Quadrangulated Patches

A quadrangulated patch of length n is a plane embedding Q with a designated outer face bounded by an
n-cycle and each inner face bounded by a walk of length four. Note that a quadrangulated patch is always
bipartite and so n is even. One can construct a quadrangulated patch for any even length; in Figure 9.8 we
show quadrangulated patches of lengths 2 and 4. It would be worthwhile to know a general construction
method for producing all quadrangulated patches of length n, but we do not discuss this here.

Figure 9.8.

In the remainder of this section we will discuss quadrangulated patches with different symmetry types
and/or conditions on degrees of vertices. These special patches are important for constructing radial graphs
with part-reversing cellular automorphisms.

9.3.1 Patches with rotational symmetry at a vertex

Proposition 9.9. If n is even and r divides n and Q is a quadrangulated patch of length n with r-fold
rotational symmetry about a central vertex, then n/r is even and the rotational symmetry preserves the
partite sets of Q.

Proof. As the central vertex is fixed, the rotational symmetry must preserve the partite sets. The orbit of a
vertex on the rim of the patch consists of r vertices on the rim spaced n/r edges apart, and the part-preserving
property implies that this distance n/r is even.

Conversely to Proposition 9.9, for any r dividing n such that n/r is even, a quadrangulated patch of
length n having rotational symmetry of order r around a central fixed vertex can always be constructed in
the following manner. Take r internally disjoint paths of length ` ≥ 1 from the central fixed point to the
outer n-cycle at r evenly spaced points. This leaves a planar embedding whose inner faces all have length
n/r + 2` which is even. Within each inner face paste in copies of a given quadrangulated patch of length
n/r + 2` in a manner that respects the rotational symmetry.

9.3.2 Patches with 4-fold rotational symmetry around a quadrilateral

Proposition 9.10. If n ≥ 4 is divisible by 4 and Q is a quadrangulated patch of length n with 4-fold rotational
symmetry around a central quadrilateral face, then n/4 is odd and the rotational symmetry exchanges the
partite sets of Q.

Proof. Since the rotational action on the central face is a 90-degree rotation, the rotational symmetry ex-
changes the partite sets of Q. The orbit of a vertex on the rim of the patch consists of 4 vertices on the rim
spaced n/4 edges apart. The part-reversing property implies that this distance n/4 is odd.

Conversely to Proposition 9.10, for any n such that n/4 is odd, a quadrangulated patch of length n with
4-fold rotational symmetry around a central face can always be constructed in the following manner. Place
a 4-cycle inside an n-cycle and connect the vertices of the 4-cycle to the n-cycle by four disjoint paths of
length ` ≥ 0 whose endpoints on the n-cycle are evenly spaced. Now the four newly formed faces are of
length 2`+ 1 + n

4 which is even. Fill in these four faces with copies of a given quadrangulated patch of length
2`+ 1 + n

4 in a way that respects the 4-fold rotational symmetry.
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9.3.3 Patches with 2-fold rotational symmetry around a quadrilateral

Proposition 9.11. If n ≥ 2 is even and Q is a quadrangulated patch of length n with 2-fold rotational
symmetry about a central face, then n/2 is even and the rotational symmetry preserves the partite sets of Q.

Proof. Given Q, a path of length 2 between opposite vertices may be temporarily inserted into the central
quadrilateral and then we obtain our result from Proposition 9.9.

Conversely to Proposition 9.11, given n ≥ 4 that is divisible by 4, a quadrangulated patch of length n
having 2-fold rotational symmetry around a central face bounded by a 4-cycle can always be constructed in
the following way. Place a 4-cycle inside an n-cycle with either 0, 1, or 2 pairs of antipodal vertices of the
4-cycle on the n-cycle.

In the first case, connect one antipodal pair of vertices on the 4-cycle to the n-cycle by two disjoint paths
of length ` ≥ 1 whose endpoints on the n-cycle are evenly spaced. In the second case take ` = 0. The two
newly formed faces are of length 2` + 2 + n

2 which is even. Fill in these two faces with copies of a given
quadrangulated patch of length 2`+ 2 + n

2 in a way that respects the 2-fold rotational symmetry.
In the third case, the four vertices on the n-cycle must be chosen to separate the n-cycle into paths of

lengths a, b, a, b where both a and b are odd. Note that the four newly formed faces all have even length.
Fill in these four faces with copies of two quadrangulated patches of the appropriate lengths in a way that
respects the 2-fold rotational symmetry.

9.3.4 Patches with 2-fold rotational symmetry around a link

Proposition 9.12. If n ≥ 2 is even and Q is a quadrangulated patch of length n with 2-fold rotational
symmetry around a central link, then n/2 is odd and the symmetry exchanges the partite sets.

Proof. The symmetry is part reversing because of the rotation around the central link. So now the orbit of
any vertex on the rim of the patch consists of 2 vertices spaced n/2 edges apart. That the symmetry is part
reversing implies that n/2 is odd.

Conversely to Proposition 9.12, given n ≥ 2 such that n/2 is odd, a quadrangulated patch of length n
having 2-fold rotational symmetry around a central link can always be constructed in the following way.
Place a link inside an n-cycle and connect the endpoints of the link to the n-cycle by two disjoint paths of
length ` ≥ 0 whose endpoints on the n-cycle are evenly spaced. The two newly formed faces have length
2` + 1 + n

2 which is even. Fill in these two faces with copies of a given quadrangulated patch of length
2`+ 1 + n

2 in a way that respects the 2-fold rotational symmetry.

9.3.5 Ladder Patches

Let C be a cycle of even length n = 2k ≥ 4 with edges of two types, say red and black (monochromatic
possible). As such, C decomposes into monochromatic paths that alternate colors along C. A ladder patch
is a quadrangulated patch P on C in which the endpoints of these monochromatic paths have degree 2 in
P , the interior vertices of the red paths have degree 3 in P (the degrees of the interior vertices of the black
paths are unrestricted), and no quadrilateral face has a pair of red antipodal edges. When such a P exists
for C, we say that C is ladder patchable.

Proposition 9.13. C is ladder patchable iff all black paths in C have length at least two.

Proof. Suppose P is a ladder patch with outer cycle C. The length of C is even and so is at least two. If
C is monochromatic black then we are done. If there is a black path of length one, then there are three
consecutive edges on C colored red, black, red. Degree requirements force these three edges to be on a face
of P but then this face has a pair of red antipodal edges, a contradiction.

For the converse, suppose all black paths in C have length at least two. If C is monochromatic red, then
take the patch P to be an annular ladder along with any arbitrary quadrangulated patch inserted along the
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inner face of the ladder (i.e., the face not incident to C). Otherwise we proceed by induction on the number
t of red edges in C. If t = 0, then pick P as any arbitrarily chosen quadrangulated patch for C. If C has
t ≥ 1 red edges, then take a consecutive red, black pair of edges along C, say e and f . If e is incident to
another red edge on C, then add a chordal path of two edges connecting the endpoints of the path e, f and
color these edges black. The cycle C ′ obtained by deleting e, f and appending the chordal path has t − 1
red edges and every black path of length at least 2. Inductively, C ′ is ladder patchable and so C is ladder
patchable. If e is incident to two black edges, say f and f ′ on C, then append a chordal link to the endpoints
of the path f, e, f ′ and color it black. As before, deleting f, e, f ′ leaves a cycle C ′ with t− 1 red edges that
is ladder patchable and thus C is ladder patchable.

We will also need ladder patches of length n with the types of rotational symmetries described in Sections
9.3.1–9.3.4.

For r-fold rotational symmetry around a central vertex when n/r is even, consider the construction
described in Section 9.3.1. The r paths of length ` ≥ 1 radiating from the central vertex must be attached to
interior vertices of the black paths or red paths on C. (These interior vertices must exist by Proposition 9.13
and the fact that n is even.) Coloring these paths black we then get that each of the r sections of the resulting
wheel is ladder patchable by Proposition 9.13. Placing copies of any ladder patch inside these sections of the
wheel in a manner respecting the rotational action yields a ladder patch on C with the required rotational
symmetry.

For 4-fold rotational symmetry around a central face when n/4 is odd, consider the construction described
in Section 9.3.2. The four paths of length ` ≥ 0 radiating out from the central face must be attached to
interior vertices on the black paths or red paths of C. In the case that ` = 0, degree requirements force these
paths to be attached to interior vertices of black paths on C. Now color these paths and the edges on the
central face black; the resulting 4 regions are all ladder patchable by Proposition 9.13. Placing copies of any
ladder patch inside the 4 sections in a manner respecting the rotational action yields a ladder patch on C
with the required rotational symmetry.

Ladder patches with 2-fold rotational symmetry around a central face (as in Section 9.3.3) or around a
central link (as in Section 9.3.4) are constructed in a similar fashion.

9.4 General constructions

Given a graph H, a split of H is a graph G obtained from H by decontractions of links at vertices of degree
at least four in H that do not create any new vertices of degree 1 or 2. Given an automorphism ψ of H, a
ψ-orbit split of H is a split of H for which the automorphism ψ extends and such that the set of decontracted
edges is acyclic. That is, at any vertex v of H where a split occurs, all vertices in orbitψ(v) are split in the
same manner with respect to ψ. A ψ-orbit subdivision of H is a graph G obtained from H by subdivisions
of all edges in some set of orbits. Of course, the automorphism ψ extends to any ψ-orbit subdivision.

Some important observations about taking minors in graphs are as follows. Given that H = G\D/C for
some disjoint sets of edges C and D in G, any loops or pendant edges in G/C may be deleted rather than
contracted without affecting H. As such, if we choose D to be a maximal set such that G\D/C = H, then
the subgraph of G corresponding to C is acyclic and G\D is obtained from H by a sequence of splits and
subdivisions. Similarly if ϕ is an automorphism of G and H = G\orbitϕ(D)/orbitϕ(C) is an orbit minor with
orbitϕ(D) ∩ orbitϕ(C) = ∅, then we can move orbits of edges in G from orbitϕ(C) to orbitϕ(D) in order to
obtain a maximal deletion set and so that G\orbitϕ(D) is obtained from H by a sequence of orbit splits and
orbit subdivisions.

9.4.1 Free automorphisms

Construction 9.14 is a 3-step process that produces free part-reversing cellular automorphisms on bipartite
quadrangulations. It takes as input a cellular automorphism ϕ of G0 in S and at step i produces a graph Gi
in S from Gi−1 in S to which ϕ extends. In practice, the input cellular automorphism will be taken from a
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complete catalogue of irreducible free cellular automorphisms of S such as what we have determined for the
sphere, projective plane, torus, and Klein bottle (there are none for Dyck’s surface).

Construction 9.14. Take a graph G that is cellularly embedded in S along with a free cellular automorphism
ϕ of G in S that has even order.

1. Let G1 be a ϕ-orbit split of G or let G1 = G.

2. Let G2 be a ϕ-orbit subdivision of G1 such that G2 is bipartite and ϕ is part reversing on G2. If G1 is
already bipartite with ϕ part reversing, then we may let G2 = G1.

3. Let F1, . . . ,Fy be the orbits of the faces of G2 in S under ϕ. For each Fi choose a quadrangulated patch
of the appropriate length and paste copies of this patch into the faces of Fi in a way that respects ϕ.

Each step in Construction 9.14 can always be carried out given the initial assumptions except maybe for
Step 2. We will not address the question of when Step 2 is executable, but we do get Theorem 9.15 which tells
us that Construction 9.14 along with a complete catalogue of the irreducible free cellular automorphisms of
S will be enough to construct all free part-reversing cellular automorphisms on bipartite quadrangulations.
The details of the proof of Theorem 9.15 can be found in the proof of Theorem 9.20.

Theorem 9.15. If ϕ is a free part-reversing cellular automorphism of a bipartite quadrangulation Q in S,
then ϕ is obtainable by Construction 9.14 from an irreducible free cellular automorphism on G in S.

An Example As an illustration of Construction 9.14 we will characterize the free part-reversing cellular
automorphisms on bipartite quadrangulations that are obtainable by Construction 9.14 from GRn,a,b,T.

There are two possible outcomes for G1 in Step 1: the (n, a, b)-torus-grid itself and a 3-regular graph
that is an orbit split of the (n, a, b)-torus-grid. Case 1 considers the rest of the construction for the former
possibility and Case 2 considers the rest of the construction for the latter possibility.

Case 1 Consider integers r and s such that ra + sb = gcd(a, b) with |r| + |s| as small as possible, and the
path γr,s from v to GRn,a,b,T(v) described in Section 6.1 which is of length |r|+ |s|.

Proposition 9.16. Let n be even and let O be an orbit subdivision of the (n, a, b)-torus-grid and ϕ the
cellular automorphism on O induced by GRn,a,b,T. Say that each edge on the n

gcd(a,n) -cycles is subdivided

ta ≥ 0 times and that each edge on the n
gcd(b,n) -cycles is subdivided tb ≥ 0 times.

(1) O is bipartite iff (ta + 1) n
gcd(a,n) and (tb + 1) gcd(a, n) + (ta + 1) gcd(b, n) are both even.

(2) If O is bipartite, then ϕ is part reversing iff (ta + 1)r 6≡ (tb + 1)s (mod 2).

Proof. (1) Let T be a cycle in the (n, a, b)-torus-grid that consists of gcd(a, n) edges along an n
gcd(b,n) -cycle

Cb followed by gcd(b, n) edges along an n
gcd(a,n) -cycle Ca. Note that T is indeed a cycle since Ca ∩ Cb

consists of n
gcd(a,n) gcd(b,n) vertices that are evenly spaced along each of Ca and Cb. Moreover, T along with

any of the horizontal n
gcd(a,n) -cycles generate the first homology group of the torus. Now since every facial

walk of O is of length 2(ta + 1) + 2(tb + 1) which is even, we get that O is bipartite iff the subdivided
n

gcd(a,n) -cycles and subdivided cycle T are both of even length. Thus O is bipartite iff (ta + 1) n
gcd(a,n) and

(tb + 1) gcd(a, n) + (ta + 1) gcd(b, n) are both even.

(2) Since O is connected and bipartite, ϕ is part reversing iff some vϕ(v)-path in O has odd length. The
path γr,s of length |r|+ |s| in the (n, a, b)-torus-grid corresponds to a path of length (ta + 1)|r|+ (tb + 1)|s|
in O which is odd iff (ta + 1)r 6≡ (tb + 1)s (mod 2).

Of course not all (n, a, b)-torus-grids are bipartite, however those that are bipartite automatically have
a part-reversing rotation because of transitivity. One infinite class of bipartite (n, a, b)-torus-grids (whose
rotations are thus part reversing) consists of torus grids of the form (n, p, q) where p and q are distinct odd
primes and 2pq|n (here, we take ta = tb = 0). Such an example is shown in Figure 6.1.
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Case 2 Let G be a 3-regular orbit split of the (n, a, b)-torus-grid and ψGR the induced cellular automorphism.
The quotient of the (n, a, b)-torus-grid modulo GRn,a,b,T in T is the bouquet of two loops, say `a and `b, in T
with the loops in independent homology classes. Thus G/〈ψGR〉 in T/〈ψGR〉 is the triple link with links `a,
`b and e with facial walk w = `a,−`b, e,−`a, `b,−e or w = `a, `b, e,−`a,−`b,−e along the single face. These
two possible facial walks correspond to two possibilities for G in T, which are locally as shown in Figure
9.17. (The (n, a, b)-torus-grid is locally as shown on the left in the figure.)

Figure 9.17.
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Proposition 9.18. Let O be an orbit subdivision of G where the e-, `a-, and `b-edges are subdivided te, ta,
and tb times and let ϕ be the induced automorphism.

(1) O is bipartite iff (ta + te)
n

gcd(a,n) and (tb + te) gcd(a, n) + (ta + te) gcd(b, n) are both even.

(2) If O is bipartite, then ϕ is part reversing iff (te + ta)r 6≡ (te + tb)s (mod 2).

Proof. (1) Given the cycle T in the proof of Proposition 9.16, there is an analogous cycle, also call it T , in
the hexagonal grid that consists of gcd(a, n) `b-edges, gcd(b, n) `a-edges, and either gcd(a, n) + gcd(b, n)− 2
or gcd(a, n) + gcd(b, n) e-edges (depending, respectively, on which possibility in Figure 9.17 is being used).
Now since the length of any facial walk in O is 2[(te+1)+(ta+1)+(tb+1)] which is even, it follows that O is
bipartite iff the subdivided cycle that is the lift of `a,−e in the quotient and the subdivided T -cycle are both
of even length. That is, O is bipartite iff [(ta + 1) + (te + 1)] n

gcd(a,n) and (tb + te) gcd(a, n) + (ta + te) gcd(b, n)
are both even.

(2) Consider the path γr,s from v to GRn,a,b,T(v) in the (n, a, b)-torus-grid. Let ev be the edge decontracted
at v and consider t(ev). Note that ψGR(t(ev)) = t(ψGR(ev)) where ψGR(ev) is the edge decontracted at
GRn,a,b,T(v). Since one of r and s must be positive and the other negative, the path γr,s is either of the form
−`b, . . . ,−`b, `a, . . . , `a or `b, . . . , `b,−`a, . . . ,−`a (where each has |s| copies of `b and |r| copies of `a). From
Figure 9.17 we see that the path in G from t(ev) to ψGR(t(ev)) that projects down to γr,s has one of the
following four forms:

`b,−e, . . . , `b,−`a, e, . . . ,−`a
e, `b, . . . , e, `b, e,−`a, . . . , e,−`a
e,−`b, . . . , e,−`b, `a,−e, . . . , `a,−e
−`b,−e, . . . ,−`b,−e, `a,−e, . . . , `a,−e

Call this path γ′. In the first case, γ′ has length 2(|r| + |s|) − 2 and in the remaining cases the length is
2(|r|+ |s|). The subdivided path γ′ in O corresponding to γ in G now has length either

[(te + 1) + (ta + 1)] |r|+ [(te + 1) + (tb + 1)]|s| − 2(te + 1) or

[(te + 1) + (ta + 1)] |r|+ [(te + 1) + (tb + 1)]|s|, respectively.

Thus ϕ is part reversing iff [(te + 1) + (ta + 1)]|r| + [(te + 1) + (tb + 1)]|s| is odd which is the case iff
(te + ta)r 6≡ (te + tb)s (mod 2).

To obtain an infinite class of examples for O in Proposition 9.18, choose n where 2pq | n for distinct odd
primes p and q and choose a = p and b = q. Note that r 6≡ s (mod 2) since p and q are odd and rp+ sq = 1.
Letting te = 0 we get that O is bipartite iff tbp+ taq is even iff ta ≡ tb (mod 2). Then ϕ is part reversing iff
ta and tb are both odd.
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9.4.2 Pseudofree automorphisms

Construction 9.19 is a 7-step process that produces pseudofree part-reversing cellular automorphisms on
bipartite quadrangulations. It takes as input a cellular automorphism ϕ of G = G0 in S and at step i
produces a graph Gi in S from Gi−1 in S to which ϕ extends. In practice, the input cellular automorphism
will be taken from a complete catalogue of irreducible and non-augmentable cellular automorphisms of S
such as what we have determined for the sphere, projective plane, torus, Klein bottle, and Dyck’s surface.

Construction 9.19. Take a graph G that is cellularly embedded in S along with a pseudofree cellular
automorphism ϕ of G in S that has even order, has G = G, and such that if x is an isolated pseudofixed
point of odd index 2k + 1 then |ϕ|

(2k+1) ∈ {2, 4}.
1. First, let G1 = G or let G1 be a ϕ-orbit split of G. Now if ϕ is free or there is a pseudofixed point

of odd index, then go to Step 2. If there is a pseudofixed point and all pseudofixed points have even
index, then either go to Step 2 or do the following.

i. Let H = G∗1.

ii. Let G5 be a ϕ-orbit split (possibly trivial) of H and skip to Step 6.

2. Let P1, . . . ,Pz be the orbits of the pseudofixed points of even index. For each Pi either do nothing or
for each x ∈ Pi place a vertex star with x at the center and pendant vertices attached to the vertices
of the facial walk around x in G1 in such a way that these stars respect the action of ϕ on Pi. Let G2

be the graph obtained by this step.

3. There is a set of edges D (possibly empty) in G2 that is edge disjoint from the stars added in Step 2
and such that the induced embedding of G2\orbitϕ(D) in S is a surface orbit minor. Choose a maximal
such set D and let G3 = G2\orbitϕ(D).

4. If there are vertices of degree 2 in G3 whose incident edges are both from stars added in Step 2, then
smooth out these vertices. If not, then do nothing. Let G4 be the graph obtained from this step.

5. For any face of G4 whose boundary consists of two distinct edges and that has an odd-index isolated
pseudofixed point inside, replace the two edges of the face by a single edge through the pseudofixed
point. If no such face exists, then do nothing. Let G5 be the graph obtained by this step.

6. Let G6 be a ϕ-orbit subdivision of G5 such that G6 is bipartite and ϕ is part reversing on G6. If G5 is
already bipartite with ϕ part reversing, then we may let G6 = G5.

7. Let F1, . . . ,Fy be the orbits of the faces of G6 in S under ϕ. For each Fi choose a quadrangulated
patch of the appropriate length; if there are pseudofixed points in the centers of the faces of Fi then
choose the quadrangulated patch with an appropriate type of symmetry as given in Proposition 9.3.
Paste copies of the quadrangulated patch into the faces of Fi in a way that respects ϕ.

Each step in Construction 9.19 can always be carried out given the initial assumptions except maybe for
Steps 6 and/or 7. We will not address the question of when these steps are executable, but we do present
Theorem 9.20 which tells us that Construction 9.19 along with a complete catalogue of the irreducible and non-
augmentable pseudofree cellular automorphisms of S are enough to construct all pseudofree part-reversing
cellular automorphisms on bipartite quadrangulations in S.

Theorem 9.20. If ϕ is a pseudofree part-reversing cellular automorphism of a bipartite quadrangulation Q in
S, then ϕ is obtainable by Construction 9.19 from an irreducible and non-augmentable cellular automorphism
of G in S.

Lemma 9.21. Let ϕ be a pseudofree cellular automorphism of G in S such that no isolated point of fix(ϕ)
is in the center of an edge of G, and let π be the projection S → S/〈ϕ〉. Then

(1) π(G) is a graph that is cellularly embedded in π(S) with at most one branch point in the interior of each
face and
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(2) For each edge e in π(G), the induced embedding of π(G)\e in π(S) is cellular with at most one branch
point in each face iff G\π−1(e) is a surface orbit minor of G.

Proof. These both readily follow from definitions.

Lemma 9.22. Let ϕ be a pseudofree cellular automorphism of G in S such that no isolated point of fix(ϕ)
is in the center of an edge of G. If G has no vertex of degree 1 and no pseudofixed vertex of degree |ϕ|/m
where m is the index, then G is deletion minimal with respect to ϕ iff either every face of G in S contains a
pseudofixed point or no face of G in S contains a pseudofixed point and ϕ acts transitively on the faces of G
in S.

Proof. Let π be the projection from S to S/〈ϕ〉. Note that the two conditions on degrees imply that π(G)
has no vertices of degree 1.
(⇐) Suppose that every face of G in S contains a pseudofixed point or ϕ acts transitively on the faces of G
in S.

In the first case, the cellular embedding of the graph π(G) in the closed surface π(S) has a branch point
in every face. If e ∈ π(G) bounds two distinct faces, then π−1(e) cannot be deleted from G because π(G)\e
will have a face with more than one branch point in its interior, contradicting Lemma 9.21. If e is on the
same face twice, then either the induced embedding of π(G)\e will be non-cellular or one endpoint of some
edge has degree 1 (which contradicts our assumptions). In the second case, the cellular embedding of π(G)
in π(S) has a single face. Now any edge e of π(G) appears twice in the boundary walk of this face. The
removal of e will result in a non-cellular embedding unless some edge has one endpoint of degree 1 in π(G).
(⇒) Suppose that G is deletion minimal with respect to ϕ. If there are face(s) of G in S with, and faces
without, pseudofixed points in their interiors, then π(G) in π(S) has face(s) with, and faces without, branch
points in their interiors. Thus there is an edge e in π(G) bounding two distinct faces, one with a branch
point and one without, and so the removal of e from π(G) leaves a cellular embedding in π(S) with at most
one branch point in each face. Deleting π−1(e) from G in S now gives a surface orbit deletion. We see that
either every face of G contains a pseudofixed point or no face of G contains a pseudofixed point. In the
former case we are done. In the latter case, if π(G) has more than a single face, then there is an edge e in
π(G) bounding two distinct faces without branch points and so G\π−1(e) is a surface orbit deletion. Thus
π(G) has one face and so ϕ is transitive on the faces of G in S.

Lemma 9.23. Let ϕ be a pseudofree cellular automorphism of G in S such that no isolated point of fix(ϕ)
is in the center of an edge of G and such that G is deletion minimal with respect to ϕ.

(1) If G has a vertex v of degree 1, then G has exactly |ϕ| edges and S is the sphere.

(2) If G has a pseudofixed vertex v of degree |ϕ|/m where m is the index of v, then G has a pseudofixed
point in the interior of each face or G has exactly |ϕ| edges.

Furthermore, in both parts, either each face of G in S has a pseudofixed point or ϕ acts transitively on the
faces of G in S.

Proof. Let π be the projection S → S/〈ϕ〉. Note that in each part of the Lemma π(v) has degree 1 in π(G)
and so π(G)\π(v) is cellularly embedded in π(S) unless π(G) is a single link in the sphere. In this case the
embedding of π(G) in π(S) has a single face and so ϕ acts transitively on the faces of G in S.

(1) Since G is deletion minimal, Lemma 9.21 implies that π(G) is a single link. Thus cellularity implies
that π(S) is the sphere. Since the degree-1 endpoint π(v) of π(G) cannot be a branch point, G is a star.
Cellularity of G in S now implies that S is the sphere.

(2) Assume that G has more than |ϕ| edges, so that π(G) has more than one edge. Because π(v) has degree
1, π(G)\π(v) in π(S) is cellular with a branch point in the face f where π(v) had been. Lemma 9.21 now
implies that f contains more than one branch point, so the face of π(G) whose boundary contains π(v) has
a branch point. If there would also be a face of π(G) in π(S) without a branch point, then there would also
be an edge e bordering two faces, one with a branch point and one without. By Lemma 9.21, G\π−1(e) in
S is a surface orbit minor, contradicting deletion minimality.
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Lemma 9.24. Let ϕ be a pseudofree cellular automorphism of G in S such that no isolated point of fix(ϕ)
is in the center of an edge of G. If G is deletion minimal with respect to ϕ and H is a ϕ-orbit subdivision of
G, then H is deletion minimal with respect to ϕ unless G has |ϕ| edges and S is the sphere.

Proof. Let π be the projection S → S/〈ϕ〉 and note that π(H) is a subdivision of π(G). Assume that G is
deletion minimal and H is not. Since G is deletion minimal, Lemma 9.21 implies that there is no edge e in
π(G) for which π(G)\e in π(S) is both cellular and has at most one branch point in each face. As such if e
is an edge of π(H) for which π(H)\e in π(S) is both cellular and has at most one branch point in each face,
then e is an edge that arose from subdivision. Let ê be the edge of π(G) that was subdivided to form the
branch2 in π(H) containing e. Now one of the endpoints, call it v, of e in π(H) has degree 1 in π(H)\e and,
by assumption, is not a branch point of π. Thus all vertices in π−1(v) have degree 1 in H\π−1(e). Now as
in the proof of Lemma 9.23(1) we can delete π−1(v) from H\π−1(e) unless H\π−1(e) is a star of |ϕ| edges in
the sphere. This deletion will again leave another vertex of degree 1 that can be deleted until all of π−1(ê)
is deleted from G, a contradiction, or until we obtain a star in the sphere.

Proof of Theorem 9.20. There is some D ⊂ E(Q) (possibly empty) such that Q\orbitϕ(D) in S is a surface
orbit minor. Choose a maximal such D and let Q1 = Q\orbitϕ(D). So now if f is a face of Q1 in S with
a facial boundary walk of length n, then n must be even as Q is bipartite and furthermore the edges of
orbitϕ(D) in the interior of f along with a cycle of length n form a quadrangulated patch of length n. These
patches obtained from Q1 relative to Q must of course respect the action of ϕ and so going from Q to Q1 is
a reversal of Step 7.

There is some B ⊂ E(Q1) (possibly empty) such that orbitϕ(B) is acyclic and Q1 is an orbit subdivision
of Q1/orbitϕ(B). Choose a maximal such B and let Q2 = Q1/orbitϕ(B). Going from Q1 to Q2 is a reversal of
Step 6 of the construction. Notice that Q2 in S is deletion minimal with respect to ϕ because Q1 is deletion
minimal by definition. Also, note that if v is a pseudofixed vertex of Q2 then v comes from a pseudofixed
vertex of Q1. We further claim that Q2 has no non-pseudofixed vertices of degree 2 unless both Q1 and Q2

are cycles. If Q1 is not a cycle, then since Q1 is connected it is not a disjoint collection of cycles and so has
vertices of degree other than 2. These are called the branch vertices of Q1. Now Q1 decomposes into branch
vertices and branches between them. Thus B is necessarily a collection of subpaths consisting of all but one
edge from each branch of Q1 that does not contain a pseudofixed vertex at its center, along with subpaths
consisting of all but two edges from each branch that does contain a pseudofixed vertex at its center. In this
case Q2 has no non-pseudofixed vertices of degree 2. So now we split the remainder of the proof into three
cases. In Case 1 say that Q2 has no vertices of degree 2 and ϕ is either free or has a pseudofixed point not
at a vertex, in Case 2 say that Q2 (and so also Q1) is a cycle, and in Case 3 say that all pseudofixed points
are at vertices of Q2.

Case 1 There can be no pseudofixed points of even index in the centers of edges since ϕ is part-reversing
on Q1. If there are pseudofixed points of odd index in the centers of edges of Q2, then double these edges
and leave the pseudofixed points inside the resulting faces of length 2. Let Q3 be the resulting graph, and so
going from Q2 to Q3 is a reversal of Step 5 of the construction. Note that Q3 is still deletion minimal with
respect to ϕ because any such pair of double edges is in a single orbit.

If there are edges in Q3 whose endpoint(s) are both pseudofixed, then subdivide these edges. Let Q4 be
the graph obtained. Going from Q3 to Q4 is a reversal of Step 4 of the construction. From Lemma 9.24
either Q4 is still deletion minimal or Q3 consists of |ϕ| edges in the sphere. However, by the argument in the
next paragraph, the latter situation does not occur.

Suppose that Q3 consists of |ϕ| edges in the sphere. Since there are no pseudofixed points of ϕ on the
edges of Q3, all of the |ϕ| edges of Q3 are in the same ϕ-orbit. By Proposition 9.3, the pseudofixed vertices
of ϕ on Q3 have even index and so Theorem 4.1 implies that ϕ on Q3 reduces to (RR2n,S)i for 2n = |ϕ| ≥ 4
and i relatively prime to 2n. Thus all pseudofixed points are at vertices of Q3, a contradiction to being in
Case 1.

2Given a subdivision S of G, a branch of S is a path that corresponds to a single edge in G.

50



Since Q4 is deletion minimal with respect to ϕ and since no pseudofixed point of ϕ is on the center of an
edge of Q4, Lemmas 9.22 and 9.23 together imply that either Q4 in S has a pseudofixed point inside each
face or ϕ acts transitively on the faces of Q4 in S. The latter situation implies that ϕ is free because in Case
1 we assume that not all of the pseudofixed points are at vertices of Q4.

If ϕ is free, then let Q5 = Q4; this is a reversal of Step 3. If ϕ is not free, then the only pseudofixed
points of ϕ that are not in the centers of faces of Q4 in S are at vertices of Q4 and (by the construction of Q4

from Q3) the vertex stars of these pseudofixed vertices do not share edges in common nor do they contain
loops. As such, for any facial boundary walk of Q4 in S, there are no two pseudofixed vertices in successive
order along the walk. Now for each face f and each incidence p with a pseudofixed vertex on the boundary
of f , place an edge connecting the vertices before and after p as shown in Figure 9.25. Let Q5 be the graph
obtained. Going from Q4 to Q5 is a reversal of Step 3 because Q4 is deletion minimal.

Figure 9.25.

*

*

**

Let W be the set of vertices in Q5 to which the new edges are attached. Note that the degree of a vertex
in W goes up by two for each link it has incident to a pseudofixed vertex. In particular any vertex of W that
had degree 2 in Q4 arose in going from Q3 to Q4 and so has degree 6 in Q5.

If ϕ is free, then let Q6 = Q5; this is a reversal of Step 2. If ϕ is not pseudofree, then each face of Q5

in S either contains a pseudofixed point and is not incident to any pseudofixed vertex or does not contain
a pseudofixed point and is incident to exactly one pseudofixed vertex. Now delete the pseudofixed vertices
and their incident links to obtain a graph Q6 with a pseudofixed point in the center of each face. Going from
Q5 to Q6 is a reversal of Step 2. Now Q6 is deletion minimal with respect to ϕ by Lemma 9.22 as long as
Q6 has no vertices of degree 1. If v is a vertex of degree 1 in Q6, then v /∈ W because the vertices in W
have degree in Q6 strictly larger than their degree in Q4 which was at least 2. Thus v has degree 1 in Q4 as
well. Since Q4 is deletion minimal, Lemma 9.23 implies that Q4 is a vertex star in the sphere. But this has
a pseudofixed vertex of index 1, which is a contradiction of Proposition 9.3.

Now we claim that Q6 has no vertices of degree 2. As above, the vertices of W cannot have degree 2 in
Q6. The other vertices of Q6 have the same degree that they had in Q4; these vertices in Q4 did not have
degree 2 because non-pseudofixed degree-2 vertices were smoothed out when going from Q1 to Q2, and Q2

was assumed to have no non-pseudofixed vertices of degree 2 in this case. So then Q6 is an orbit split of
some Q7 that is irreducible and not augmentable.

Case 2 We may assume that some pseudofixed point of ϕ is not located at a vertex of Q2, because otherwise
we could refer to Case 3. The action of ϕ on Q2 is either rotation or reflection. In the former case, there
are no pseudofixed points on Q2 and so ϕ is irreducible and not augmentable. Reversing Step 5 to Step 1
involves doing nothing.

In the latter case, there are exactly two pseudofixed points on Q2. Note that by cellularity S must be the
sphere or projective plane. If S is the projective plane, then the fact that pseudofree cellular automorphisms
of the projective plane have exactly one pseudofixed point (see Theorem 5.1) would yield a contradiction.
Suppose then that S is the sphere. By Theorem 4.1 the two pseudofixed points on are the only pseudofixed
points of ϕ and they have index either 1 or 2. If both points are at centers of edges, then Q2 has length 2.
If one point is at a vertex and the other is in the center of an edge, then Q2 is a loop.

If Q2 has both pseudofixed points in the centers of links, then by Proposition 9.3 the index of these
pseudofixed points is 1 and so Q2 in S is not deletion minimal, a contradiction.

If Q2 is a loop, then ϕ fixes the vertex of Q2. This is a contradiction, since ϕ is part-reversing on Q1.

Case 3 We may assume that ϕ has a pseudofixed point, since otherwise we could refer to Case 1. By
Proposition 9.3 all pseudofixed points have even index.
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We will now show that we can reverse the duality option in Step 1, and thus we need not consider reversals
of Steps 2 – 5. There is some set C of edges such that Q2/orbitϕ(C) in S is a surface orbit minor. Choose
C to be a maximal such set, possibly empty, and let Q′2 = Q2/orbitϕ(C). Note that Q′2 is irreducible with
respect to ϕ because Q2 is deletion minimal. Going from Q2 to Q′2 is a reversal of Step 1.ii.

We claim that all vertices of Q′2 are pseudofixed. If not, there is an edge e connecting some pseudofixed
vertex x with some non-pseudofixed vertex y. Let π : S → S/〈ϕ〉; the embedding of π(Q′2) in π(S) is cellular
with π(x) 6= π(y). Contracting π(e) in the quotient leaves a cellular embedding and does not bring two
branch points together. Also, we get that orbitϕ(e) is acyclic because the facts that orbitϕ(x)∩ orbitϕ(y) = ∅,
|orbitϕ(x)| = |ϕ|/m where m is the index of x, |orbitϕ(y)| = |ϕ|, and |orbitϕ(e)| = |ϕ| together imply that
orbitϕ(e) is a vertex-disjoint union of stars. Thus we can contract orbitϕ(e) inQ2, contradicting the maximality
of C.

Now let Q3 = (Q′2)∗; going from Q′2 to Q3 is a reversal of Step 1.i. Since each vertex of Q′2 is pseudofixed,
each face of Q3 in S contains a pseudofixed point. Thus Q3 is deletion minimal with respect to ϕ by Lemma
9.22 as long as Q3 has no vertices of degree 1. If Q3 has a vertex of degree 1, then Q′2 has a contractible
loop, which would contradict the irreducibility of Q′2. Now Q3 is ϕ-orbit split of some irreducible and non-
augmentable Q4, as required, as long as Q3 has no vertices of degree 2. However, a degree-2 vertex of Q3

would come from a length-2 contractible face of Q′2 in S, which again would contradict the irreducibility of
Q′2.

Example 1 Let us determine all of the possible results of Construction 9.19 starting with the pseudofree
cellular automorphism RR2n,S. Since there are two pseudofixed points of index 2 each, we may choose the
duality option in Step 1. There is no first splitting possible in Step 1. After dualizing, however, we may split
in Step 1.ii as shown in Figure 9.26. (The resulting graph is the alternating double wheel of length 2n.)

Figure 9.26.

* *

In Step 6, if the above orbit split was not done, then each edge must be subdivided an even number of
times so that ϕ is part-reversing; the bipartite property is automatic. If the above orbit split was done, then
each of the old edges must be split an even number of times so that that ϕ is part-reversing but each of
the new edges may be split any number of times. The bipartite property is again automatic. Patching now
occurs in Step 7.

If the duality option is not chosen in Step 1, then again no splitting is possible in Step 1. We need not
consider Steps 2 – 5 because the only possible results of these steps may be achieved using the duality option
in Step 1. In Step 6 each edge must be subdivided an even number of times so that ϕ is part-reversing; the
bipartite property is automatic. Patching can now occurs in Step 7 by the results in Sections 9.3.3 and 9.3.1.

Example 2 Let us determine all of the possible results of Construction 9.19 starting with the pseudofree
cellular automorphism P4,2:1,2:2,T (see Figure 6.5). First, the possible results from Step 1 are shown in Figure
9.27 (the duality option is not available).

Figure 9.27.
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If we are to add any stars to pseudofixed points of even index in Step 2, then the possible results are shown
in Figure 9.28.
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Figure 9.28.
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All possible results of Steps 3 and 4 on the graphs in Figure 9.28 are shown in Figure 9.29 up to deletion of
vertices of degree 1, deletion of an edge from pairs of double edges not enclosing a pseudofixed point, and
subdivisions. We need not consider any of these three possibilities because these deletions and smoothings
of subdivisions can be reversed in subsequent steps of the construction.

Figure 9.29.
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So now at the completion of Step 5, we are left with one of the five embeddings from Figures 9.27 and
9.29. All of these embeddings are already bipartite and ϕ is part reversing on them save for the rightmost
embedding in Figure 9.27. We will now describe all possible results for Step 6. In each case, patching can
occur in Step 7 by the results in Sections 9.3.1, 9.3.2, and 9.3.3.

The leftmost embedding in Figure 9.27 has two separate orbits of edges. For each orbit the edges are
subdivided an even number of times. The middle embedding in Figure 9.27 has three separate orbits of edges.
The edges along the square faces must be subdivided an even number of times and the spoke edges can be
subdivided any number of times. The rightmost embedding in Figure 9.27 has three separate orbits of edges:
the diagonal edges, the vertical and horizontal edges on the inner octagon, and the vertical and horizontal
edges on the outer octagon. Subdivide edges in these orbits a, b, and c times, respectively; we need a+ b to
be odd and 2a+ b+ c ≡ b+ c mod 2 to be even. (These conditions on a, b, c also imply that a+ c is odd.)

The first embedding in Figure 9.29 has two separate orbits of edges. The orbit of edges on the central
square must be subdivided an odd number of times and the edges in the other orbit can be subdivided
any number of times. The second embedding in Figure 9.29 has just one orbit of edges and these must be
subdivided an even number of times.

9.4.3 Non-pseudofree automorphisms

Our procedure for constructing non-pseudofree part-reversing cellular automorphisms on bipartite quadrangu-
lations requires the following rather technical proposition about orbit deletions. When ϕ is a non-pseudofree
cellular automorphism of G in S, we denote the augmentation of G along the ovals (but not at the isolated
pseudofixed points) by G̃; call this the oval augmentation of G.

Proposition 9.30. Let ϕ be a non-pseudofree, part-reversing cellular automorphism on a bipartite quadran-
gulation Q in S. Properly 2-color the vertices of Q with blue and green. Let R = Q̃\orbitϕ(D) be a surface

orbit deletion in which none of the edges of orbitϕ(D) are edges of oval cycles of Q̃ (include the case that
D = ∅).

(1) If |ϕ|/2 is odd, then color the oval edges red and the remaining edges black. The following holds for R
in S.

i. All facial boundary walks are ladder patchable.

ii. All oval-cycles with Möbius neighborhoods have odd length.
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iii. All oval-cycles with annular neighborhoods have even length.

iv. ϕ|R exchanges blue and green vertices.

(2) If |ϕ|/2 is even, we have the following for R in S. Call the edges of the oval-cycles that are interior to
the diamonds of the necklaces in Q “ diamond chords.”

i. The length of any closed walk w in R and the number of appearances of diamond chords on w are
equivalent mod 2.

ii. ϕ|R exchanges blue and green vertices.

Proof. (1) By Proposition 9.4, the neighborhood of any oval in Q is a ladder. As such, the facial boundary
walks of Q̃ in S are all of length 4. Thus the facial boundary walks of R are all of even length and are ladder
patchable. The lengths of the oval cycles follow from Proposition 9.4 and the color-exchange property comes
from the fact that ϕ is part-reversing on Q.

(2) By Proposition 9.4, the neighborhood of any oval in Q is a necklace. If w is a closed walk in Q̃, then
any appearance of a diamond chord in w may be replaced by two of the edges of that diamond to obtain a
corresponding closed walk w0 in Q. Since Q is bipartite, the length of w0 is even and so the parity of the
length of w is equal to the parity of the number of appearances of diamond chords on w. The color-exchange
property comes from the fact that ϕ is part-reversing on Q.

Construction 9.32 is an 8-step process that produces non-pseudofree part-reversing cellular automorphisms
on bipartite quadrangulations. It takes as input a non-pseudofree cellular automorphism ϕ of G = G0 in S
and at step i produces an embedding Gi in S from Gi−1 in S to which ϕ extends. In practice, the input
cellular automorphism will be taken from a complete catalogue of oval-irreducible and non-augmentable
cellular automorphisms of S such as what we have determined for the sphere, projective plane, torus, Klein
bottle, and Dyck’s surface.

Two special ϕ-orbit splits that we will utilize are the following. Given ϕ on G in S, a ϕ-orbit split of G
away from the ovals of ϕ is a ϕ-orbit split in which none of the new edges are oval edges and all of the old
oval edges are still oval edges. The left-hand side of Figure 9.31 shows a split away from an oval vertex. The
right-hand side of the figure shows an oval thickening. This is obtained by replacing each oval edge of G by
a face of length two and then splitting transversely across the oval as shown.

Figure 9.31.

O

O

Construction 9.32. Take a graph G that is cellularly embedded in S along with a non-pseudofree cellular
automorphism ϕ of G in S that has G = G and whose isolated pseudofixed points satisfy the conditions for
Construction 9.19.

1. Let G1 be a ϕ-orbit split of G such that G1 = G1 or let G1 = G. If there are no isolated pseudofixed
points or there is an isolated pseudofixed point of odd index, then skip to Step 2. If there is an isolated
pseudofixed point and all isolated pseudofixed points have even index, then either skip to Step 2 or do
the following:

i. Let H1 be the oval thickening of G1.

ii. Let T be a collection of edges of H1 (possibly empty) which are transverse to the ovals such that
H2 = H1\orbitϕ(T ) in S is a surface orbit minor of H1 in S and such that H2 has minimum degree
3.
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iii. Let H3 = H∗2 . (Note that H̃∗2 = H∗2 .)

iv. Let G6 be a ϕ-orbit split away from the ovals of H3. If |ϕ|/2 is odd, then the ϕ-orbit split must be
such that all oval vertices have degree 4. Now skip to Step 7.

2. Let P1, . . . ,Pz be the orbits of the isolated pseudofixed points of even index. For each Pi either do
nothing or for each x ∈ Pi place a vertex star with x at the center and with its pendant vertices attached
to the vertices of the facial walk around x in G1 in such a way that these stars respect the rotational
action of ϕ around x. Let G2 be the graph obtained by this step.

3. There is a set of edges D (possibly empty) in G2 that is edge disjoint from the oval-cycles and stars
added in Step 2 and such that the induced embedding of G2\orbitϕ(D) in S is a surface orbit minor.
Choose a maximal such set D and let G3 = G2\orbitϕ(D).

4. If there are vertices of degree 2 in G3 whose incident edges are both from stars added in Step 2, then
smooth out these vertices. If not, then do nothing. Let G4 be the graph obtained from this step.

5. For any face of G4 whose boundary consists of two distinct edges that are not on oval cycles and that
has an odd-index isolated pseudofixed point inside, replace the two edges of the face by a single edge
through the pseudofixed point. If no such faces exist, then do nothing. Let G5 be the graph obtained
by this step.

6. If |ϕ|/2 is even, then let G6 = G5. If |ϕ|/2 is odd, the vertices of G5 on its oval-cycles that have degree
greater than 4 must be split so that the edges of oval-cycles remain in the ovals and the vertices along
the new oval-cycles have degree 2 or 4. Let G6 be the graph obtained.

7. • If |ϕ|/2 is odd, then color the edges of the oval-cycles of G6 red and the remaining edges of G6

black. Let G7 be a ϕ-orbit subdivision of G6 such that: all facial boundary walks of G7 have even
length; facial boundary walks containing oval edges have all maximal black paths of length at least
two; all oval-cycles of G7 with Möbius neighborhoods have odd length; all oval-cycles of G7 with
annular neighborhoods have even length; and the vertices of G7 that are not on the oval cycles
may be 2-colored blue and green so that no two vertices of the same color are adjacent and so that
ϕ exchanges the colors.

• If |ϕ|/2 is even, then let G7 be a ϕ-orbit subdivision of G6 along with a designation of some (or
none) of the edges on the oval-cycles as diamond chords such that: the assignment of diamond
chords respects the action of ϕ; the length of any closed walk w and the number of appearances of
diamond chords along w are equivalent mod 2; and the vertices of G7 may be 2-colored blue and
green so that adjacent vertices along diamond chords have the same color, adjacent vertices along
non-diamond-chord edges have different colors, and ϕ exchanges the colors.

8. Let F1, . . . ,Fy be the orbits of the faces of G7.

• If |ϕ|/2 is odd, then for each Fi the colored facial boundary walks of Fi correspond to ladder
patchable cycles C by Proposition 9.13. Choose an appropriate ladder patch and paste copies of
it into the faces of Fi in a manner respecting the action of ϕ. Delete the edges of the oval cycles
and smooth out the resulting vertices of degree 2.

• If |ϕ|/2 is even, then for each Fi let ` be the length of the faces in Fi plus the number of appearances
of diamond chords along such a facial boundary walk. (Note that ` must be even.) Choose a
quadrangulated patch whose length is `. If there are pseudofixed points in the centers of the faces
of Fi then choose the patch to have an appropriate type of symmetry as given in Proposition 9.3.
Paste copies of the quadrangulated patch into the faces of Fi in a way that respects ϕ and so that
diamond chords are covered by paths of length 2. Now delete the diamond chords.

Each step in Construction 9.32 can always be carried out given the initial assumptions except maybe
for Steps 7 and/or 8. We will not address the question of when these steps are executable, but we do
present Theorem 9.33 which tells us that Construction 9.32 along with a complete catalogue of the oval-
irreducible and non-augmentable cellular automorphisms of S will be enough to construct all non-pseudofree
part-reversing cellular automorphisms on bipartite quadrangulations.
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In Step 8 we need not account for patches with reflectional symmetry because of the following argument.
Any oval-cycle intersecting a face f ∈ Fi does so along its boundary because the ovals are covered by cycles.
So then the existence of any reflectional symmetry caused by an oval edge appearing twice along the boundary
walk of f ∈ Fi implies that there is an isolated pseudofixed point of index m dividing |ϕ|/2 at the center of
f . Thus rotational symmetry around this isolated point will account for any such reflectional symmetry.

A somewhat awkward aspect of Construction 9.32 is Step 6. This step is a priori necessary because of
degree constraints on vertices in oval cycles given by Proposition 9.4; however, in the proof of Theorem 9.33
it is not necessary to reverse this step. As such, it should be possible to modify the construction in a way
that omits this step. It seems that such a change, however, would make the construction more complicated.

Theorem 9.33. If ϕ is a non-pseudofree part-reversing cellular automorphism of a bipartite quadrangulation
Q in S, then ϕ is obtainable by Construction 9.32 from an oval-irreducible cellular automorphism on G in S
that is not augmentable.

Proof. Properly 2-color the vertices of Q with blue and green. Color the edges of the oval cycles of Q̃ red
and the remaining edges of Q̃ black. If |ϕ|/2 is even, then designate the edges of Q̃ inside the diamonds of
the necklaces as diamond chords.

There is some set of black edges D ⊂ E(Q̃) (possibly empty) such that Q̃\orbitϕ(D) in S is a surface orbit

minor. Choose a maximal such D and let Q0 = Q̃\orbitϕ(D). We now have that Q0 satisfies Proposition
9.30. Let f be a face of Q0 in S of length `. In the case that |ϕ|/2 is even, the parity of ` is the same as
the parity of the number, say ˆ̀, of diamond chords appearing along the boundary walk of f . Proposition 9.4
now implies that the edges of orbitϕ(D) in the interior of f taken with an additional cycle of length `+ ˆ̀ (not

necessarily in Q̃ because the boundary walk of f may not be a cycle in Q̃) form a quadrangulated patch of
length `+ ˆ̀ perhaps with rotational symmetry around some central isolated pseudofixed point. In this case,
going from Q to Q0 is a reversal of Step 8. In the case that |ϕ|/2 is odd, Proposition 9.4 implies that the edges
of orbitϕ(D) in the interior of f taken along with an additional cycle of length ` (with appropriate colors)
form a ladder patch perhaps with rotational symmetry around some central isolated pseudofixed point. In
this case as well, going from Q to Q0 is a reversal of Step 8. By the maximality of D, there are no black
edges in Q0 in S whose orbits may be deleted. We thus say that Q0 in S is black-deletion minimal with
respect to ϕ.

There is some set of edges B ⊂ E(Q0) (possibly empty) such that orbitϕ(B) is acyclic and Q0 is an orbit
subdivision of Q0/orbitϕ(B). Choose a maximal such B and let Q1 = Q0/orbitϕ(B); going from Q0 to Q1 is a
reversal of Step 7 of the construction because Q0 satisfies Proposition 9.30. By construction, Q1 in S is still
black-deletion minimal with respect to ϕ because Q0 is. As in the proof of Theorem 9.20 we also get that
either Q1 has no vertices of degree 2 except possibly isolated pseudofixed vertices of degree 2 or Q0 and Q1

are both cycles. In Case 1 say that ϕ has no isolated pseudofixed points or has an isolated pseudofixed point
not at a vertex of Q1. In Case 2 say that ϕ has an isolated pseudofixed point and all isolated pseudofixed
points are at vertices of Q1. Additionally in Cases 1 and 2 say that Q1 is not a cycle. In Case 3 say that Q0

and Q1 are both cycles.

Case 1 To reverse Step 6, we need not do anything. Since ϕ is part reversing on Q, no isolated pseudofixed
point in the center of an edge of Q1 has even index. If there are such isolated pseudofixed points of odd
index, then each such edge is black and we can replace each with two black edges forming a digon around
the pseudofixed point. Let Q2 be the graph obtained. Going from Q1 to Q2 is a reversal of Step 5 of the
construction. Note that Q2 is still black-deletion minimal with respect to ϕ because the doubled edges are
in the same orbits under ϕ.

If there are black edges in Q2 whose endpoint(s) are both isolated pseudofixed points of even index, then
subdivide these edges. Let Q3 be the graph obtained. Going from Q2 to Q3 is a reversal of Step 4 of the
construction.

Claim 1. Q3 is black-deletion minimal.
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Proof of Claim: Note that Q3 is connected and is assumed to not be a cycle and so must have black edges.
Thus Q3 has at least two orbits of edges, one of each color. As such Q3 has at least 2|ϕ| edges because ovals do
not intersect edges transversely and there are no isolated pseudofixed points in the centers of edges. Now the
details of the proof of Lemma 9.24 actually focus on individual non-deletable edges and so we can apply the
same reasoning here to the black edges of Q3 to get that Q3 in S is black-deletion minimal with respect to ϕ. ♣

The only isolated pseudofixed points of ϕ that are not in the centers of faces of Q3 in S are at vertices of
Q3. Such a pseudofixed vertex is, of course, not on an oval-cycle and no two such pseudofixed vertices share
edges in common nor do they have incident loops.

Claim 2. Either every face of Q3 in S has a pseudofixed point at its center or ϕ acts transitively on the
faces of Q3 in S and no face has a pseudofixed point at its center.

Proof of Claim: The proof is the same as one direction of the proof of Lemma 9.22, with the following caveat.
Two faces sharing a red edge are in the same orbit under ϕ and so any edge bounding two faces in different
orbits is black. ♣

Based on Claim 2 and the assumptions of Case 1 we have two subcases. In Case 1.1 every face of Q3 in S
has an isolated pseudofixed point at its center and in Case 1.2 ϕ acts transitively on the faces of Q3 in S and
ϕ has no isolated pseudofixed points.

Case 1.1 Given a face f of Q3 in S, there can be no two pseudofixed vertices in consecutive cyclic order
along the facial boundary walk of f . For each f and each incidence of a pseudofixed vertex v with f , place
a black edge in f connecting the vertices around the incidence of v in the boundary walk of f (see Figure
9.25). Let Q4 be the graph obtained and note that ϕ extends to Q4 and preserves the red and black colors
of edges. Going from Q3 to Q4 is a reversal of Step 3. Let W be the vertices of Q4 (and also Q3) to which
the new edges are attached. Note that the degree of each vertex in W goes up by two (in going from Q3 to
Q4) for each adjacency with a pseudofixed vertex. As such the non-pseudofixed vertices of degree 2 in Q3

have degree 6 in Q4.
Now delete the pseudofixed vertices and their incident edges from Q4 to obtain Q5. This is an orbit

deletion and is a reversal of Step 2. Note that every face of Q5 in S has a pseudofixed point in its center.
The degree of a vertex of Q5 not in W is the same as its degree in Q3. The degree of a vertex of Q5 in W is
at least 1 greater than its degree in Q3. As such Q5 has no vertices of degree 2.

Claim 3. Q5 is black-deletion minimal.

Proof of Claim: By construction every face of Q5 in S has an isolated pseudofixed point at its center and these
are all of the isolated pseudofixed points of ϕ. By way of contradiction let e be a black edge such that orbitϕ(e)
may be deleted from Q5. If e borders two distinct faces, then deleting e violates the condition on more than
one pseudofixed point in the interior of a face, a contradiction. If e borders the same face twice, then dele-
tion will either violate cellularity (a contradiction) or e has an endpoint v of degree 1, also a contradiction. ♣

Now since Q5 is black-deletion minimal, there is a maximal set of edges that we may contract to obtain
an oval-irreducible surface orbit minor that is not augmentable. This is a reversal of Step 1 because Q5 has
no vertices of degree 2, as noted above.

Case 1.2 In this case, Q3 is actually equal to Q1. Since ϕ has no isolated pseudofixed points we need not
do anything to reverse Steps 2 and 3.

Now since Q3 = Q1 is black-deletion minimal, there is a maximal set of edges that we may contract to
obtain an oval-irreducible surface orbit minor that is not augmentable. This is a reversal of Step 1 because
Q3 = Q1 has no vertices of degree 2, as noted above.

Case 2 Let C be a maximal collection of black edges (possibly empty) such that Q2 = Q1/orbitϕ(C) in S is
a surface orbit minor of Q1 in S. Going from Q1 to Q2 is a reversal of Step 1.iv. In particular this is a valid
reversal when |ϕ|/2 is odd because the oval vertices of Q2 have degree 4. Note that since Q1 is black-deletion
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minimal, so is Q2. Since there are no pseudofixed points in the centers of faces, we also get that ϕ acts
transitively on the faces of Q2 in S.

Now we get that each vertex of Q2 is an either an oval vertex or is pseudofixed. If v is a non-pseudofixed
vertex of Q2 in S, then there is a black edge e connecting v to a vertex w that may be pseudofixed. We
must have that orbitϕ(e) is a vertex-disjoint union of stars and so orbitϕ(e) may be contracted from Q2, a
contradiction of the maximality of C.

Claim 4. The length of the faces of Q2 in S is at least 4.

Proof of Claim: Since ϕ acts transitively on the faces of Q2 in S, at least one edge on the boundary of each
face is an oval edge. If there is a face of Q2 in S that has length less than three, then all vertices of Q2

are on ovals, contradicting the assumptions of Case 2. If there is a face f of Q2 of length three, then since
at least one vertex v on the boundary of f is not on an oval, f has exactly one oval edge on its boundary
and two non-oval edges. Since v is pseudofixed and ϕ is transitive on the faces of Q2 in S, we get that Q2

is a double wheel in the sphere with the rim of the double wheel being the oval cycle. This contradicts the
black-deletion minimality of Q2 in S. ♣

Now let Q3 = Q∗2 and so going from Q2 to Q3 is a reversal of Step 1.iii. By the properties of Q2 in the last
paragraph each face of Q3 either contains an isolated pseudofixed point at its center or contains a segment
of an oval which connects the centers of a pair of antipodal edges along its boundary walk, but not both of
these possibilities. Furthermore, each edge of Q3 that transversely crosses an oval is a link (i.e., not a loop).
This is because the presence of such a loop would imply that some face of Q2 has an oval edge appearing
twice along its boundary walk. Such a face must then contain an isolated pseudofixed point at its center;
however, all isolated pseudofixed points of ϕ appear at vertices of Q2, a contradiction. Moreover, Claim 4
implies that Q3 has minimum degree 4.

Now for each face of Q3 containing a segment of an oval and having length greater than 4, subdivide the
face into quadrilaterals with edges transversely crossing the ovals. Let the graph obtained be denoted by
Q4. Going from Q3 to Q4 is a reversal of Step 1.ii. So we can now let Q5 in S be obtained from Q4 in S
by a reversal of the oval thickening operation, hence reversing Step 1.i. Now Q̃5 = Q5 and each face of Q5

contains an isolated pseudofixed point at its center and so Q5 is minimal with respect to deleting edges off
of the ovals. Furthermore, Q4 has minimum degree 4 and thus Q5 has minimum degree 3. It follows that Q5

is a ϕ-orbit split of some oval-irreducible Q6 in S.

Case 3 Note that Q1 must be an oval-cycle and so S is the sphere or projective plane. By Theorems 4.1
and 5.1, ϕ reduces to a power of ORR4k+2,S or a power of R2k,P. In each case Q2 is oval irreducible and so
reversal of the remaining steps involves doing nothing.

Example 1 We will determine all of the possible results of Construction 9.32 starting with OR2,2:1,K (see
Figure 7.5).

First, the possible results from Step 1 are shown in the first row of Figure 9.34. Since the isolated
pseudofixed points have odd index, Steps 2, 3, and 4 are omitted. The necessary applications of Step 5 to
the first and third embeddings in the first row of Figure 9.34 are shown in the second row. Step 6 is now not
necessary.

For all three of the embeddings to be considered in Step 7 (i.e., the middle embedding of the first row
and the two embeddings of the second row) the oval cycle must subdivided so that its length is even because
|ϕ|/2 is odd and the oval cycle has an annular neighborhood.

For the embeddings shown in the second row, the path off of the oval cycle must be subdivided so that
its length is odd (because the index-1 isolated pseudofixed point at its center must be in the center of a link)
and at least three (for patchability). The desired 2-coloring of the vertices off of the oval cycle is now possible
and the single face of the orbit subdivision has length 4t+ 2 for some t and so patching may occur in Step 8
by the results in Section 9.3.4.
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For the middle embedding of the first row, the original two vertices on the oval cycle partition the
subdivided oval cycle into two subpaths of lengths a and b where a ≡ b (mod 2). The two paths off of the
oval cycle must be subdivided at least once (for patchability) and with parity opposite to that of a and b to
ensure that the resulting faces have boundaries of length 4t+ 2. The desired 2-coloring is possible and now
patching may occur in Step 8 by the results in Section 9.3.4.

Figure 9.34.
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Example 2 Let us determine all of the possible results of Construction 9.32 starting with O′4,1:1,2:2,D (see
Figure 8.4). The first three embeddings in Figure 9.35 show (O′4,1:1,2:2,D)	 (the shaded region represents the
hole resulting from the cut) and all of the possible results of Step 1. If we take advantage of Step 2, then the
possibilities are all shown in Figure 9.28 (after shading in the central face as in Figure 9.35). Now we need
only consider the results of Steps 3 and 4 that are minimal with respect to deletion off of ovals and orbit
subdivisions. The only such result is shown on the right in Figure 9.35. Now Steps 5 and 6 are unnecessary
(the latter is because |ϕ|/2 is even).

Figure 9.35.

*

* *

v u

*

*

*

*

*

u v

a

a

b b

*

* *

vu'

*

*

*

*

u

v'
a

a

b b

u'

u

v

v'

d

d

c

c
*

*

* *

v
u

*

*

*

*

*

u
v

a

a

b b

u'

u'' v'

v''

*

* *

*

* *

*

*

u

v
u

v

a

b b

a

We now describe all of the possible ways in which Steps 7 and 8 may happen.
Consider the leftmost embedding in Figure 9.35. The vertices u and v must be colored different colors so

that ϕ will reverse the blue and green colors. So now the oval edge a must be subdivided to have length `o
along with any do edges designated as diamond chords such that do 6≡ `o (mod 2) (see Proposition 9.30). Do
the same to the oval edge b. The non-oval edges are all in the same orbit and must be subdivided so that
their lengths `v are odd in order that the 2-coloring of u and v extends. Now every closed walk satisfies the
parity condition of Step 7. Now by the results of Sections 9.3.1, 9.3.2, and 9.3.3 we can find patches with the
proper symmetry for Step 8.

Consider the second embedding in Figure 9.35. Again color u and v different colors and subdivide the
oval edges a and b to have lengths `o along with any do diamond chords such that do 6≡ `o (mod 2). The
diagonal edges are subdivided to have length `s and the remaining edges, which are all in the same orbit,
are subdivided to have length `v. In order to extend the 2-coloring we need that `v + 2`s is odd. Thus `v is
odd and `s is arbitrary. Now every closed walk satisfies the parity condition of Step 7 and the 2-coloring of
u and v extends as well. Now by the results of Sections 9.3.1, 9.3.2, and 9.3.3 we can find patches with the
proper symmetry for Step 8.

Consider the third embedding in Figure 9.35. Again color u and v different colors so that ϕ exchanges
blue and green colors. Either color u′ the same color as u or the other color. In the first case, v′ must have
the same color as v so that ϕ exchanges colors. Thus the length `o of a and b and the number of diamond
chords do must satisfy `o 6≡ do (mod 2) and the length of the diagonal edges on the oval, say `s, and the
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number of diamond chords ds on the diagonal edges must satisfy `s ≡ ds (mod 2). If the remaining four
edges of the embedding are subdivided so that their length `v is odd, then the subdivision satisfies the parity
condition. The 2-coloring of the vertices will extend as well. Similarly, in the second case we need `o ≡ do
(mod 2), `s 6≡ ds (mod 2), and `v even. In both cases, by the results of Sections 9.3.1, 9.3.2, and 9.3.3 we
can find patches with the proper symmetry for Step 8.

For the rightmost embedding in Figure 9.35, color u and v different colors and the pseudofixed vertices
pu (adjacent to u) and pv (adjacent to v) different colors. Either the colors of pu and u are the same or
different. The rest follows as in the previous paragraph.
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